Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities
-
摘要: 用高速摄像拍摄了90°锥头弹丸低速入水的空泡形态演变过程,全面讨论了不同入水冲击速度下空泡的闭合方式及其演变过程,分析了空泡闭合时间、闭合点水深和弹头空泡长度随入水速度的变化规律以及不同水深位置空泡直径的变化规律;研究了水幕闭合和近液面空泡收缩上升所形成的射流现象及其相互耦合作用过程,探讨了空泡深闭合后其壁面波动规律。结果表明:随着入水速度的增加,空泡分别发生准静态闭合、浅闭合、深闭合和表面闭合,每种闭合方式对应的一个速度区间;弹头产生空泡的临界入水速度为0.657 m/s;不同水深位置的空泡直径呈现非线性变化;随着水深的增加空泡扩张初速增大,空泡最大直径减小,扩张段缩短,收缩段延长;同一时刻水深越大空泡扩张收缩的加速度也越高;水幕闭合后会产生向上和向下两股射流,向下射流速度较大时会对弹丸运动产生影响;近液面空泡收缩上升时会产生强度正比于空泡体积大小和闭合点水深的射流,并与上两股射流相互耦合形成一股更强的向上射流;空泡深闭合后长度缩短和产生的向下射流使弹丸受力发生改变,弹丸速度因受力产生的变化带动了流体质点速度的波动,进而导致空泡壁面发生波动,壁面波动遵循空泡截面独立扩张原理。Abstract: Experimental studies of the vertical water entry of projectile with 90° cone-shaped head were conducted by using high speed camera. The pinch-off types and evolutionary process of the cavity were comprehensively discussed at different water entry impact velocities. The variations of cavitation closure time, water depth at the closure point and length of the warhead cavitation with water entry velocities, as well as the cavitation diameter at different water depth positions were analyzed. The jet phenomenon caused by the closure of the water curtain and contraction-rising process of the cavity near undisturbed free surface were studied, as well as the coupled effect between them. The cavity wall fluctuation occurring after the deep seal was discussed. The results show that with the increase of water entry velocity, the quasi-static closure, shallow closure, deep closure and surface closure of the cavitation occurs respectively, and each closure mode corresponds to a velocity range; the critical water entry velocity of forming cavitation is 0.657 m/s. The diameter of the cavitation presents a nonlinear increase along with the water depth. The initial cavity expansion velocity increases, the maximum diameter of the cavity decreases, the expansion section shortens, the contraction section lengthens, and the acceleration of the expansion and contraction of the cavity increases along with the increase of the water depth at the same time. When the water curtain closes, there will be upward and downward jets, and when the downward jet velocity is relatively large, the projectile motion will be affected. The strength of a water jet induced by longitudinal upward contraction of the cavity near free surface is proportional to the volume of cavity and pinch-off depth. A large strength upward water jet is induced by the coupling of the above all water jet. The longitudinal contraction of the cavity around the projectile and the impact effect of downward jet on projectile would cause the force change of the projectile after deep seal. The fluctuation of the projectile's velocity because of its force change brings the velocity change of fluid and then leads to the fluctuation of the cavity wall. The fluctuation of cavity wall follows the principle of independent expansion of cavitation section.
-
表 1 不同水深位置空泡特性参数
Table 1. Characteristic parameters of cavity at different underwater depths
Hf/mm tr/ms tm/ms ta/ms Te/ms Ts/ms Dm/mm 3.5 2.7 63.0 82.0 60.3 19.0 32.0 20 8.3 42.0 61.3 33.7 19.3 21.5 40 14.7 28.0 50.3 13.3 22.3 16.5 59 22.0 31.5 48.7 9.5 17.2 15.0 -
YAN H M, LIU Y M, KOMINIARCZUK J, et al. Cavity dynamics in water entry at low Froude numbers[J]. Journal of Fluid Mechanics, 2009, 641:441-461. DOI: 10.1017/S0022112009991558. ARISTOFF J M, TRUSCOTT T T, TECHET A H, et al. The water entry of decelerating spheres[J]. Physics of Fluids, 2010, 22(3):032102(1)-032102(8). DOI: 10.1063/1.3309454. ARISTOFF J M, BUSH J W M. Water entry of small hydrophobic spheres[J]. Journal of Fluid Mechanics, 2009, 619:45-78. DOI: 10.1017/S0022112008004382. 马庆鹏, 何春涛, 王聪, 等.球体垂直入水空泡实验研究[J].爆炸与冲击, 2014, 34(2):174-180. DOI: 10.11883/1001-1455(2014)02-0174-07.MA Qingpeng, HE Chuntao, WANG Cong, et al. Experimental investigation on vertical water-entry cavity of sphere[J]. Explosion and Shock Waves, 2014, 34(2):174-180. DOI: 10.11883/1001-1455(2014)02-0174-07. BERGMANN R, MEER D V D, GEKLE S, et al. Controlled impact of disk on a water surface:cavity dynamics[J]. Journal of Fluid Mechanics, 2009, 633:1-34. DOI: 10.1017/S0022112009006983. 蒋运华, 徐胜利, 周杰.圆盘空化器航行体入水空泡实验研究[J].工程力学, 2017, 34(3):241-246. DOI: 10.6052/j.issn.1000-4750.2015.09.0726.JIANG Yunhua, XU Shengli, ZHOU Jie. Water entry experiment of a cylindrical vehicle with disc cavitator[J]. Engineering Mechanics, 2017, 34(3):241-246. DOI: 10.6052/j.issn.1000-4750.2015.09.0726. YAO E R, WANG H R, PAN L, et al. Vertical water-entry of bullet-shaped projectiles[J]. Journal of Applied Mathematics and Physics, 2014, 2:323-334. DOI: 10.4236/jamp.2014.26039. 杨衡, 张阿漫, 龚小超, 等.不同头型弹体低速入水空泡试验研究[J].哈尔滨工程大学学报, 2014, 35(9):1060-1067. DOI: 10.3969/j.issn.1006-7043.201304035.YANG Heng, ZHANG Aman, GONG Xiaochao, et al. Experimental study of the cavity of low speed water entry of different head shape projectiles[J]. Journal of Harbin Engineering University, 2014, 35(9):1060-1067. DOI: 10.3969/j.issn.1006-7043.201304035. 何春涛, 王聪, 魏英杰, 等.圆柱体垂直入水空泡形态试验[J].北京航空航天大学学报, 2012, 38(11):1542-1546. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205748643HE Chuntao, WANG Cong, WEI Yingjie, et al. Vertical water entry cavity of cylinder body[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(11):1542-1546. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205748643 何春涛, 王聪, 何乾坤, 等.圆柱体低速入水空泡试验研究[J].物理学报, 2012, 61(13):281-289. DOI: 10.7498/aps.61.134701.HE Chuntao, WANG Cong, HE Quankun, et al. Low speed water-entry of cylindrical projectile[J]. Acta Physica Sinica, 2012, 61(13):281-289. DOI: 10.7498/aps.61.134701. 施红辉, 胡青青, 陈波, 等.钝体倾斜和垂直冲击入水时引起的超空泡流动特性实验研究[J].爆炸与冲击, 2015, 35(5):617-624. DOI: 10.11883/1001-1455(2015)05-0617-08.SHI Honghui, HU Qingqing, CHEN Bo, et al. Experimental study of supercavitating flows induced by oblique and vertical water entry of blunt bodies[J]. Explosion and Shock Waves, 2015, 35(5):617-624. DOI: 10.11883/1001-1455(2015)05-0617-08. TRUSCOTT T T, EPPS B P, BELDEN J. Water entry of projectiles[J]. Annual Review of Fluid Mechanics, 2013, 46:355-378. DOI: 10.1146/annurev-fluid-011212-140753. 王永虎, 石秀华.入水冲击问题研究的现状与进展[J].爆炸与冲击, 2008, 28(3):276-282. DOI: 10.11883/1001-1455(2008)03-0276-07.WANG Yonghu, SHI Xiuhua. Review on research and development of water-entry impact problem[J]. Explosion and Shock Waves, 2008, 28(3):276-282. DOI: 10.11883/1001-1455(2008)03-0276-07.