Dynamic response of inner octagonal hollow reinforced concrete columns under lateral impact loading
-
摘要: 相比于实心钢筋混凝土柱,空心钢筋混凝土柱具有自重轻和截面扩展好等优点,被广泛地用作桥墩,由此其不可避免地会受到船舶的撞击。本文中进行6根内八边形空心钢筋混凝土柱和4根内衬八边形钢管空心钢筋混凝土柱的动力响应的实验。在实验中记录了构件破坏形态、撞击力时程曲线和跨中位移时程曲线,并从撞击高度、边界条件和钢板厚度等方面分析了构件的耐撞性能。结果表明:内八边形钢筋混凝土柱和内衬八边形钢管空心钢筋混凝土柱在撞击荷载作用下的破坏形态主要分为两种破坏类型,分别为局部型破坏和整体型破坏;撞击高度越大构件破坏越严重;两端固定对构件的耐撞击性能有提升作用;钢管厚度对构件的耐撞击性能有较明显的提升作用。Abstract: By comparing with their solid reinforced concrete columns counterparts, the inner hollow reinforced concrete columns are widely used as piers because of their advantages including light weight and good section extension. These piers will inevitably be hit by ships. In this paper, dynamic response experiments of six inner octagonal hollow reinforced concrete columns with and without steel tube are carried out. The failure mode, the impact force- versus-time curves and trans-middle displacement-versus-time curves were recorded. The impact resistance of the component is obtained by analysis of the impact height, the condition of the boundary and the thickness of the steel tube The experimental results show that failure modes of inner octagonal hollow reinforced concrete columns under lateral impact load can be divided into two categories: local failure (type I) and global failure (type II). As the height of impact increases, the damage seriousness of the component increases. Fixing two endings of the component can improve its impact resistance. The thickness of the steel tube has an obvious effect on the impact resistance of the component.
-
表 1 落锤参数
Table 1. Parameters of drop-weight
名称 直径/mm 高度/mm 质量/kg 锤体 490 486 719.43 锤头顶部 490 150 221.20 冲击力传感器 300 150 82.90 锤头底部 450 100 124.37 表 2 试件材料几何尺寸和性质
Table 2. Specimen geometry and material properties
名称 直径/mm 屈服强度/MPa 极限强度/MPa 壁厚/mm 钢管 − 304.0 457.0 2.00 钢管 − 304.0 457.0 3.91 纵筋 15.6 455.5 641.6 − 箍筋 7.7 475.3 670.0 − 表 3 试件编号和试验结果
Table 3. Experimental results
试件编号 冲击高度/mm 冲击能量/J 力峰值/MN 残余挠度/mm 跨中底部实验前高度/mm 跨中底部实验后高度/mm FF-2 2 000 2.25×104 25.56 9 400 391 FF-5 5 001 5.63×104 67.00 40 398 358 FS-2 2 000 2.25×104 12.69 6 398 392 FS-5 4 999 5.63×104 17.82 50 394 347 SS-2 2 001 2.25×104 12.33 11 400 389 SS-5 5 002 5.63×104 31.67 52 397 345 TFF-2 2 001 2.25×104 10.53 6 398 392 TFF-5 5 000 5.63×104 16.46 29 397 368 RSS-2 2 001 2.25×104 13.06 7 397 390 RSS-5 5 000 5.63×104 29.61 37 397 360 注:FF、FS、SS 分别代表两端固定、一端固定一端简支以及两端简支;数字 2 和 5 分别表示撞击高度(H)为 2 m 和 5 m;T 和 R 分别表示钢管厚度(T)为 3.91 mm 和 2 mm;FS5 表示试件一端固定一端简支,冲击高度为 5 m 的工况;TFF5 表示两端固支,钢管厚度为 3.91 mm,冲击高度为 5 m 的工况。 -
[1] WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: experiment and FEA model [J]. Journal of Constructional Steel Research, 2013, 80: 188–201. DOI: 10.1016/j.jcsr.2012.09.003. [2] 王蕊, 李珠, 任够平, 等. 侧向冲击载荷作用下钢管混凝土梁动力响应的实验和理论研究 [J]. 工程力学, 2008, 25(6): 75–93. DOI: 1000-4750(2008)06-0075-06.WANG Rui, LI Zhu, REN Gouping, et al. Study on dynamic response of concrete filled steel tube under lateral impact loading [J]. Engineering Mechanics, 2008, 25(6): 75–93. DOI: 1000-4750(2008)06-0075-06. [3] 任够平, 李珠, 王蕊. 低速侧向冲击下钢管混凝土柱挠度研究 [J]. 工程力学, 2008, 25(5): 170–175. DOI: 1000-4750(2008)05-0170-06.REN Gouping, LI Zhu, WANG Rui. The deflection of concrete filled steel tubular column under lateral impact at low speed [J]. Engineering Mechanics, 2008, 25(5): 170–175. DOI: 1000-4750(2008)05-0170-06. [4] 张瑞坤, 王兴国, 葛楠, 等. 侧向撞击作用下钢筋混凝土柱动力响应的有限元分析 [J]. 工程抗震与改造加固, 2009, 32(1): 21–25. DOI: 10.16226/j.issn.1002-8412.2010.01.009.ZHANG Ruikun, WANG Xingguo, GE Nan, et al. Finite element analysis of the dynamic response of column under lateral impact [J]. Earthquake Resistant Engineering and Retrofitting, 2009, 32(1): 21–25. DOI: 10.16226/j.issn.1002-8412.2010.01.009. [5] 冯宇, 王兴国, 张玉敏, 等. 配筋率对混凝土柱侧向抗撞击性能影响的试验研究 [J]. 工业建筑, 2011, 41(11): 85–88. DOI: 10.13204/j.gyjz2011.11.016.FENG Yu, WANG Xingguo, ZHANG Yuming, et al. Experimental study on the effect of reinforcement ratio of the capabilities of RC column to resist impact loading [J]. Industrial Construction, 2011, 41(11): 85–88. DOI: 10.13204/j.gyjz2011.11.016. [6] HAN L H, HOU C C, ZHAO X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading [J]. Journal of Constructional Steel Research, 2014, 92: 25–39. DOI: 10.1016/j.jcsr.2013.09.003. [7] 朱翔, 陆新征, 杜永峰, 等. 外包钢管加固RC柱抗冲击试验研究 [J]. 工程力学, 2016, 33(6): 23–33. DOI: 10.6052/j.issn.1000-4750.2014.11.0991.ZHU Xiang, LUXingzheng, DU Yongfeng, et al. Experimental study on impact resistance of RC columns strengthened with external steel jackets [J]. Engineering Mechanics, 2016, 33(6): 23–33. DOI: 10.6052/j.issn.1000-4750.2014.11.0991. [8] 周泽平, 王明洋, 冯淑芳, 等. 钢筋混凝土梁在低速冲击下的变形与破坏研究 [J]. 振动与冲击, 2007, 26(5): 99–103. DOI: 10.3969/j.issn.1000-3835.2007.05.028.ZHOU Zeping, WANG Mingyang, FENG Shufang, et al. Deformation and failure of reinforced beam under low velocity impact [J]. Journal of Vibration and Shock, 2007, 26(5): 99–103. DOI: 10.3969/j.issn.1000-3835.2007.05.028. [9] 田力, 朱聪. 碰撞冲击荷载作用下钢筋混凝土柱的损伤评估及防护技术 [J]. 工程力学, 2013, 30(9): 144–150. DOI: 1000-4750(2013)09-0144-07 144-150.TIAN Li, ZHU Cong. Damage evaluation and protection technique of RC columns under impulsive load [J]. Engineering Mechanics, 2013, 30(9): 144–150. DOI: 1000-4750(2013)09-0144-07 144-150. [10] THILAKARATHNA H M I, THAMBIRATNAM D P, DHANASEKAR M, et al. Numerical simulation of axially concrete columns under transverse impact and vulnerability assessment [J]. International Journal of Impact Engineering, 2010, 37(11): 1100–1112. DOI: 10.1016/j.ijimpeng.2010.06.003. [11] FUJIKAKE K, SENGA T, UEDA N, et al. Sturdy on impact response of reactive powder concrete beam and its analytical model [J]. Journal of Advanced Concrete Technology, 2006, 4(1): 99–108. DOI: 10.3151/jact.4.99. [12] FUJIKAKE K, LI B, SOEUN S. Impact response of reinforced concrete beam and its analytical evaluation [J]. Journal of Structural Engineering, 2009, 135(8): 938–950. DOI: 10.1061/(ASCE)ST.1943-541X.0000039. [13] AL-THAIRY H, WANG Y C. A numerical study of the behaviour and failure modes of axially compressed steel columns subjected to transverse impact [J]. International Journal of Impact Engineering, 2011, 38(8/9): 732–744. DOI: 10.1016/j.ijimpeng.2011.03.005. [14] REMENNIKOV A M, KONG S Y, UY B. Response of foam-and concrete-filled square steel tubes under low-velocity impact loading [J]. Journal of Performance of Constructed Facilities, 2011, 25(5): 373–381. DOI: 10.1061/(ASCE)CF.1943-5509.0000175. [15] BAMBACH M R, JAMA H, ZHAO X L, et al. Hollow and concrete filled steel hollow sections under transverse impact loads [J]. Engineering Structures, 2008, 30(10): 2859–2870. DOI: 10.1016/j.engstruct.2008.04.003. [16] BAMBACH M R. Design of hollow and concrete filled steel and stainless steel tubular columns for transverse impact loads [J]. Thin-Walled Structures, 2011, 49(10): 1251–1260. DOI: 10.1016/j.tws.2011.05.009. [17] YOUSUF M, UY B, TAO Z, et al. Transverse impact resistance of hollow and concrete filled stainless steel columns [J]. Journal of Constructional Steel Research, 2013, 82(82): 177–189. DOI: 10.1016/j.jcsr.2013.01.005.