Preliminary numerical simulation of rock perforation cracking
-
摘要: 岩石射孔作业后孔眼周围裂缝分布规律对后续压裂有不可忽视的影响。选取射孔围岩的横切面为研究对象,将三维射孔侵彻过程简化为二维扩孔过程。考虑岩石细观非均匀性,设细观强度参数服从韦布尔分布。应用拉伸破坏准则和Mohr-Coulomb压剪破坏准则,并用模量折减法处理单元开裂,从而用FEPG软件实现了有限元数值模拟。模拟结果表明:射孔后的岩石可根据裂缝产生原因及分布由内而外划分为四个区域:压剪破坏区、拉伸破坏集中区、拉伸破坏扩展区和未破坏区。分析了不同射孔弹规格及围压条件下裂纹分布变化规律。与室内模拟实验结果进行对比分析,初步验证了模型的有效性。Abstract: The distribution of cracks around the rock hole after perforation has a great influence on the subsequent fracturing. A cross-section of the target is selected as the researching object. The process of three-dimensional penetration is simplified into a two-dimensional reaming process. In terms of the mesoscopic heterogeneity of the rock, the strength parameters of meso-units are set to obey the Weibull probability distribution. The tensile failure criteria and the Mohr-Coulomb compression shear failure criteria are applied, and modulus reduction method is applied to deal with cracking. Then FEPG software is used to achieve a finite element method (FEM) simulation. The simulation results show that according to the causes and distribution of cracks, the perforated rock can be divided into four regions from the inside to the outside: compression shear damage zone, tensile damage concentration zone, tensile damage propagation zone and undamaged zone. The variations of crack distribution under different loading and confining pressure conditions are analyzed. Compared with the results of laboratory simulation experiments, the validity of the model is preliminarily verified. The research results lay the foundation for subsequent research work.
-
表 1 模拟计算参数
Table 1. Parameters of simulation calculation
参数
名称弹性模
量/GPa抗拉强
度/MPa内摩擦
角/(°)内聚力/
MPa泊松比 侵彻孔
直径/mm参数大小 40 10 17 20 0.3 11 表 2 天然页岩与水泥试样数据对比表
Table 2. Comparison of performance parameters between natural shale and cement sample
试样种类 渗透率/(10−6 μm2) 孔隙度/% 天然页岩 4.0 4.1 水泥试样 6.7 3.3 表 3 水泥试样尺寸及编号表
Table 3. Size and number of cement samples
围压/
MPa试样直径/
mm试样长度/
mm试样
编号上端面
编号下端面
编号30 200 200 X1 X1-A X1-B 300 X2 X2-A X2-B 500 X3 X3-A X3-B 20 200 200 Y1 Y1-A Y1-B 300 Y2 Y2-A Y2-B 500 Y3 Y3-A Y3-B -
[1] IEA. World energy outlook 2011 [R]. France: International Energy Agency, 2011. [2] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学 [J]. 石油勘探与开发, 2013, 40(4): 385–399. DOI: 10.11698/PED.2013.04.01.ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology [J]. Petroleum Exploration and Development, 2013, 40(4): 385–399. DOI: 10.11698/PED.2013.04.01. [3] 刘合, 王峰, 王毓才, 等. 现代油气井射孔技术发展现状与展望 [J]. 石油勘探与开发, 2014, 41(6): 731–737. DOI: 10.11698/PED.2014.06.13.LIU He, WANG Feng, WANG Yucai, et al. Oil well perforation technology: status and prospects [J]. Petroleum Exploration and Development, 2014, 41(6): 731–737. DOI: 10.11698/PED.2014.06.13. [4] 胡柳青, 李夕兵, 龚声武. 冲击载荷作用下裂纹动态响应的数值模拟 [J]. 爆炸与冲击, 2006, 26(3): 214–221. DOI: 10.11883/1001-1455(2006)03-0214-08.HU Liuqing, LI Xibing, GONG Shengwu. Simulation on dynamic response of crack subjected to impact loading [J]. Explosion and Shock Waves, 2006, 26(3): 214–221. DOI: 10.11883/1001-1455(2006)03-0214-08. [5] 朱秀星, 张林, 薛世峰, 等. 砂岩储层射孔压实伤害评价 [J]. 中国石油大学学报(自然科学版), 2014, 38(1): 137–142. DOI: 10.3969/j.issn.1673-5005.2014.01.021.ZHU Xiuxing, ZHANG Lin, XUE Shifeng, et al. Evaluation of perforating damage for sandstone [J]. Journal of China University of Petroleum, 2014, 38(1): 137–142. DOI: 10.3969/j.issn.1673-5005.2014.01.021. [6] 薛世峰, 逄铭玉, 朱秀星, 等. 砂岩储层射孔压实带孔隙度与渗透率损伤研究 [J]. 岩土力学, 2015, 36(6): 1529–1536. DOI: 10.16285/j.rsm.2015.06.002.XUE Shifeng, PANG Mingyu, ZHU Xiuxing, et al. Study of porosity and permeability damage of perforation compaction zone in sandstone reservoir [J]. Rock and Soil Mechanics, 2015, 36(6): 1529–1536. DOI: 10.16285/j.rsm.2015.06.002. [7] 单清林, 金衍, 王亚军, 等. 螺旋射孔多孔眼起裂裂缝形态有限元模拟 [J]. 中国海上油气, 2017, 29(4): 123–130. DOI: 10.11935/j.issn.1673-1506.2017.04.016.SHAN Qinglin, JIN Yan, WANG Yajun, et al. Finite element simulation of fracture initiation from multiple perforation channels if spiral pattern [J]. China Offshore Oil and Gas, 2017, 29(4): 123–130. DOI: 10.11935/j.issn.1673-1506.2017.04.016. [8] 王成, 王万军, 宁建国. 聚能装药对混凝土靶板的侵彻研究 [J]. 力学学报, 2015, 47(4): 672–886. DOI: 10.6052/0459-1879-14-336.WANG Cheng, WANG Wanjun, DING Jianguo. Investigation on shaped charge penetrating into concrete targets [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 672–886. DOI: 10.6052/0459-1879-14-336. [9] NABIPOUR A, SARMADIVALEH M. A DEM study on perforation induced damaged zones and penetration length in sandstone reservoirs [C] // 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium. American Rock Mechanics Association, 2010. [10] 向旭, 赵世华, 周伏虎. 石油射孔弹金属射流穿孔机理及金属粉末选用研究 [J]. 测井技术, 2000, 24(6): 448–449. DOI: 10.3969/j.issn.1004-1338.2000.06.012.XIANG Xu, ZHAO Shihua, ZHOU Fuhu. Perforation mechanism of metal perforating boreholes and selection of metal powders [J]. Well Logging Technology, 2000, 24(6): 448–449. DOI: 10.3969/j.issn.1004-1338.2000.06.012. [11] 范裕如. 串联外套式增效射孔技术研究[D]. 太原: 中北大学, 2013: 65. [12] 谭延栋. 聚能喷流射孔[M]. 北京: 石油工业出版社, 1958. [13] 徐芝纶. 弹性力学上册[M]. 北京: 高等教育出版社, 2006. [14] 林英松, 蒋金宝, 朱天玉, 等. 爆炸载荷对水泥试样损伤破坏规律研究 [J]. 中国石油大学学报(自然科学版), 2006, 30(3): 55–58. DOI: 10.3321/j.issn:1000-5870.2006.03.012.LIN Yingsong, JIANG Jinbao, ZHU Tianyu, et al. Research of cement sample's damage and fracture by exploding load [J]. Journal of China University of Petroleum (Natural Science Edition), 2006, 30(3): 55–58. DOI: 10.3321/j.issn:1000-5870.2006.03.012. [15] 荣峰. 非均匀脆性介质损伤演化的多尺度数值模拟[D]. 北京: 中国科学院力学研究所, 2006. [16] Recommended practices for evaluation of well perforators [S]. Washington: API Publishing Services, 2006. [17] 林英松, 刘莹, 魏晓菲, 等. 射孔作业对孔道周围岩石损伤规律实验研究 [J]. 实验室研究与探索, 2017, 36(12): 47–51. DOI: 10.3969/j.issn.1006-7167.2017.12.013.LIN Yingsong, LIU Ying, WEI Xiaofei, et al. Experimental study on failure laws of rock around perforating tunnel caused by perforation [J]. Research and Exploration in Laboratory, 2017, 36(12): 47–51. DOI: 10.3969/j.issn.1006-7167.2017.12.013.