全尺寸干线输气管道爆炸地振动的空间分布和时频分布特性

马华原 龙源 李兴华 钟明寿 周辉 吴建源

马华原, 龙源, 李兴华, 钟明寿, 周辉, 吴建源. 全尺寸干线输气管道爆炸地振动的空间分布和时频分布特性[J]. 爆炸与冲击, 2019, 39(4): 042201. doi: 10.11883/bzycj-2018-0123
引用本文: 马华原, 龙源, 李兴华, 钟明寿, 周辉, 吴建源. 全尺寸干线输气管道爆炸地振动的空间分布和时频分布特性[J]. 爆炸与冲击, 2019, 39(4): 042201. doi: 10.11883/bzycj-2018-0123
MA Huayuan, LONG Yuan, LI Xinghua, ZHONG Mingshou, ZHOU Hui, WU Jianyuan. Characteristics of space and time-frequency distribution of the vibration in full-scale trunk gas pipeline explosion[J]. Explosion And Shock Waves, 2019, 39(4): 042201. doi: 10.11883/bzycj-2018-0123
Citation: MA Huayuan, LONG Yuan, LI Xinghua, ZHONG Mingshou, ZHOU Hui, WU Jianyuan. Characteristics of space and time-frequency distribution of the vibration in full-scale trunk gas pipeline explosion[J]. Explosion And Shock Waves, 2019, 39(4): 042201. doi: 10.11883/bzycj-2018-0123

全尺寸干线输气管道爆炸地振动的空间分布和时频分布特性

doi: 10.11883/bzycj-2018-0123
基金项目: 国家自然科学基金(11672331,51608530)
详细信息
    作者简介:

    马华原(1992- ),男,博士研究生,503812350@qq.com

    通讯作者:

    龙 源(1958- ),男,博士,教授,914800684@qq.com

  • 中图分类号: O384

Characteristics of space and time-frequency distribution of the vibration in full-scale trunk gas pipeline explosion

  • 摘要: 针对第三代大输量天然气管道爆炸振动危害效应展开研究,组织实施了全尺寸天然气管道爆炸试验。经数据分析发现,天然气管道爆炸地振动的衰减更加符合指数分布而非传统幂率分布,且其振动强度在空间内分布不均匀,存在特定方向振动加强的现象。采用改进型的MP-WVD算法分析得到天然气管道爆炸地振动的时频特性,其振动的主要频率范围为10~20 Hz,持续时间为0.1~0.2 s。存在多次加载特性,瑞利波成分强于勒夫波成分。研究成果可为后续管道施工安全设计以及事故现场勘测提供参考。
  • 图  1  天然气管道爆炸事故

    Figure  1.  Pipeline gas explosion accidents

    图  2  试验场

    Figure  2.  Test field

    图  3  测点布设方案

    Figure  3.  Layout scheme of measuring points

    图  4  爆炸瞬间及爆后管道

    Figure  4.  Explosions and pipeline affected

    图  6  拟合效果对比

    Figure  6.  Comparison of fitted effects

    图  5  振动峰值分布图

    Figure  5.  Peak vibration distribution diagram

    图  7  振动场三维拟合效果图

    Figure  7.  3D fitting diagram of vibration field

    图  8  1#测点振动信号时频分布

    Figure  8.  Time frequency distribution of measuring point 1#

    图  9  7#测点振动信号时频分布

    Figure  9.  Time frequency distribution of measuring point 7#

    图  10  13#测点振动信号时频分布

    Figure  10.  Time frequency distribution of measuring point 13#

    图  11  19#测点振动信号时频分布

    Figure  11.  Time frequency distribution of measuring point 19#

    图  12  频率边际谱

    Figure  12.  Marginal spectrum

    图  13  质点位移

    Figure  13.  Particle displacement

    表  4  0° 测线振动速度

    Table  4.   Data of vibration velocity of measuring line 0°

    测点 l/m VX/(cm·s−1) fX/Hz VY/(cm·s−1) fY/Hz VZ/(cm·s−1) fZ/Hz V/(cm·s−1)
    19# 20 7.99 27.5 4.33 29.2 5.03 18.9 9.33
    20# 30 3.13 26.1 3.03 21.3 6.91 18.2 7.34
    21# 40 1.73 22.2 1.63 12.8 4.15 13.6 4.22
    22# 60 1.03 18.2 0.85 18.3 1.13 14.2 1.16
    23# 90 0.78 17.5 0.61 13.6 0.95 13.7 0.54
    下载: 导出CSV

    表  1  90° 测线振动速度

    Table  1.   Data of vibration velocity of measuring line 90°

    测点 l/m VX/(cm·s−1) fX/Hz VY/(cm·s−1) fY/Hz VZ/(cm·s−1) fZ/Hz V/(cm·s−1)
    1# 20 7.14 8.3 6.32 8.2 9.05 15.3 13.15
    2# 30 5.32 8.0 5.15 8.6 7.85 16.2 10.79
    3# 40 2.95 8.1 3.17 58.5 5.39 18.9 7.60
    4# 60 1.44 8.0 2.37 60.4 2.31 15.4 3.57
    5# 90 2.58 7.9 1.85 7.9 3.94 13.8 1.90
    6# 130
    下载: 导出CSV

    表  3  30° 测线振动速度

    Table  3.   Data of vibration velocity of measuring line 30°

    测点 l/m VX/(cm·s−1) fX/Hz VY/(cm·s−1) fY/Hz VZ/(cm·s−1) fZ/Hz V/(cm·s−1)
    13# 20 8.46 15.5 6.96 15.2 6.56 22.9 11.86
    14# 30 3.19 18.1 1.82 23.5 9.46 15.1 9.68
    15# 40 2.54 17.5 0.91 16.7 5.43 20.3 6.52
    16# 60 1.32 20.1 0.99 8.8 2.22 16.1 2.79
    17# 90 0.85 16.6 0.75 18.0 1.40 19.7 1.53
    18# 130 0.36 19.1 0.38 17.3 0.54 17.9 0.65
    下载: 导出CSV

    表  2  60° 测线振动速度

    Table  2.   Data of vibration velocity of measuring line 60°

    测点 l/m VX/(cm·s−1) fX/Hz VY/(cm·s−1) fY/Hz VZ/(cm·s−1) fZ/Hz V/(cm·s−1)
    7# −20 5.37 8.0 4.58 61.2 8.77 13.7 9.01
    8# −30 4.33 17.7 3.71 60.6 7.92 14.0 6.31
    9# −40 4.76 16.8 2.41 16.0 2.41 13.8 5.17
    10# −60 1.35 13.5 1.09 7.9 0.81 20.2 1.50
    11# −90 1.00 12.0 0.74 8.3 1.08 16.8 1.32
    12# 130
    下载: 导出CSV
  • [1] 范照伟. 全球天然气发展格局及我国天然气发展方向分析 [J]. 中国矿业, 2018, 27(4): 11–16; 22

    FAN Zhaowei. Global natural gas development pattern and the analysis of development direction of natural gas in China [J]. China Mining Magazine, 2018, 27(4): 11–16; 22
    [2] 帅健. 美国油气管道事故及其启示 [J]. 油气储运, 2010, 29(11): 806–809. DOI: 10.6047/j.issn.1000-8241.2010.11.002

    SHUAI Jian. Oil and gas pipeline accident in the United States and its enlightenment [J]. Oil and Gas Storage and Transportation, 2010, 29(11): 806–809. DOI: 10.6047/j.issn.1000-8241.2010.11.002
    [3] 胡灯明, 骆晖. 国内外天然气管道事故分析 [J]. 石油工业技术监督, 2009(9): 8–12. DOI: 10.3969/j.issn.1004-1346.2009.09.002

    HU Dengming, LUO Hui. Case analysis of oil and gas pipeline accidents at home and abroad [J]. Technology Supervision in Petroleum Industry, 2009(9): 8–12. DOI: 10.3969/j.issn.1004-1346.2009.09.002
    [4] YANG S, FANG Q, ZHANG Y, et al. An integrated quantitative hazard analysis method for natural gas jet release from underground gas storage caverns in salt rock. Ⅰ: Models and validation [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 74–81. doi: 10.1016/j.jlp.2012.09.008
    [5] LOWESMITH B J, HANKINSON G. Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures [J]. Process Safety and Environmental Protection, 2013, 91(1): 101–111.
    [6] BARALDI D, KOTCHOURKO A, LELYAKIN A, et al. An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel [J]. International Journal of Hydrogen Energy, 2009, 34(18): 7862–7872. doi: 10.1016/j.ijhydene.2009.06.055
    [7] GALLEGO E, MIGOYA E, MARTIN-VALDEPENAS J M, et al. An intercomparison exercise on the capabilities of CFD models to predict distribution and mixing of H2 in a closed vessel [J]. International Journal of Hydrogen Energy, 2007, 32(13): 2235–2245. doi: 10.1016/j.ijhydene.2007.04.009
    [8] SU Huayou. Analysis of characteristics of compound vibration and effects to surrounding gas pipeline caused by impact and explosion [J]. Procedia Engineering, 2011, 26: 1835-1843.
    [9] MAHDAVI H, KENNY S, PHILLIPS R, et al. Influence of geotechnical loads on local buckling behavior of buried pipelines [C]//2008 7th International Pipeline Conference. American Society of Mechanical Engineers, 2008: 543–551.
    [10] 李洪涛, 卢文波, 舒大强, 等. 爆破地震波的能量衰减规律研究 [J]. 岩石力学与工程学报, 2010, 29(S1): 3364–3369

    LI Hongtao, LU Wenbo, SHU Daqiang, et al. Study of energy attenuation law of blast-induced seismic wave [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3364–3369
    [11] 吕涛, 石永强, 黄诚, 等. 非线性回归法求解爆破振动速度衰减公式参数 [J]. 岩土力学, 2007(9): 1871–1878. DOI: 10.3969/j.issn.1000-7598.2007.09.019

    LYU Tao, SHI Yongqiang, HUANG Cheng, et al. Study on attenuation parameters of blasting vibrationby nonlinear regression analysis [J]. Rock and Soil Mechanics, 2007(9): 1871–1878. DOI: 10.3969/j.issn.1000-7598.2007.09.019
    [12] 周辉, 龙源, 钟明寿, 等. 基于双参数MP算法的不同孔深爆炸地震波特性研究 [J]. 振动与冲击, 2016, 35(18): 76–81. DOI: 10.13465/j.cnki.jvs.2016.18.013

    ZHOU Hui, LONG Yuan, ZHONG Mingshou, et al. Characteristics analysis of explosion seismic waves with different hole depth based on the method of double parameters matching pursuit [J]. Journal of Vibration and Shock, 2016, 35(18): 76–81. DOI: 10.13465/j.cnki.jvs.2016.18.013
    [13] 闫孔明, 刘飞成, 朱崇浩, 等. 地震作用下含倾斜软弱夹层斜坡场地的动力响应特性研究 [J]. 岩石力学与工程学报, 2017, 36(11): 2686–2698

    YAN Kongming, LIU Feicheng, ZHU Chonghao, et al. Dynamic responses of slopes with intercalated soft layers under seismic excitations [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2686–2698
    [14] 梅比, 汪旭光, 杨仁树. 基于改进MP-WVD算法的核电厂建设爆破振动信号处理方法[J]. 爆炸与冲击, 2019, 39(4): 045201. DOI: 10.11883/bzycj-2018-0055.

    MEI Bi, WANG Xuguang, YANG Renshu. Blasting vibration signal analysis technology of construction of nuclear power plant based on improved MP-WVD algorithm [J]. Explosion and Shock Waves, 2019, 39(4): 045201. DOI: 10.11883/bzycj-2018-0055.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  5464
  • HTML全文浏览量:  1771
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-13
  • 修回日期:  2018-06-01
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回