• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

全尺寸干线输气管道爆炸地振动的空间分布和时频分布特性

马华原 龙源 李兴华 钟明寿 周辉 吴建源

强洪夫, 范树佳, 陈福振, 刘虎. 基于SPH方法的聚能射流侵彻混凝土靶板数值模拟[J]. 爆炸与冲击, 2016, 36(4): 516-524. doi: 10.11883/1001-1455(2016)04-0516-09
引用本文: 马华原, 龙源, 李兴华, 钟明寿, 周辉, 吴建源. 全尺寸干线输气管道爆炸地振动的空间分布和时频分布特性[J]. 爆炸与冲击, 2019, 39(4): 042201. doi: 10.11883/bzycj-2018-0123
Qiang Hongfu, Fan Shujia, Chen Fuzhen, Liu Hu. Numerical simulation on penetration of concrete target by shaped charge jet with SPH method[J]. Explosion And Shock Waves, 2016, 36(4): 516-524. doi: 10.11883/1001-1455(2016)04-0516-09
Citation: MA Huayuan, LONG Yuan, LI Xinghua, ZHONG Mingshou, ZHOU Hui, WU Jianyuan. Characteristics of space and time-frequency distribution of the vibration in full-scale trunk gas pipeline explosion[J]. Explosion And Shock Waves, 2019, 39(4): 042201. doi: 10.11883/bzycj-2018-0123

全尺寸干线输气管道爆炸地振动的空间分布和时频分布特性

doi: 10.11883/bzycj-2018-0123
基金项目: 国家自然科学基金(11672331,51608530)
详细信息
    作者简介:

    马华原(1992- ),男,博士研究生,503812350@qq.com

    通讯作者:

    龙 源(1958- ),男,博士,教授,914800684@qq.com

  • 中图分类号: O384

Characteristics of space and time-frequency distribution of the vibration in full-scale trunk gas pipeline explosion

  • 摘要: 针对第三代大输量天然气管道爆炸振动危害效应展开研究,组织实施了全尺寸天然气管道爆炸试验。经数据分析发现,天然气管道爆炸地振动的衰减更加符合指数分布而非传统幂率分布,且其振动强度在空间内分布不均匀,存在特定方向振动加强的现象。采用改进型的MP-WVD算法分析得到天然气管道爆炸地振动的时频特性,其振动的主要频率范围为10~20 Hz,持续时间为0.1~0.2 s。存在多次加载特性,瑞利波成分强于勒夫波成分。研究成果可为后续管道施工安全设计以及事故现场勘测提供参考。
  • 图  1  天然气管道爆炸事故

    Figure  1.  Pipeline gas explosion accidents

    图  2  试验场

    Figure  2.  Test field

    图  3  测点布设方案

    Figure  3.  Layout scheme of measuring points

    图  4  爆炸瞬间及爆后管道

    Figure  4.  Explosions and pipeline affected

    图  6  拟合效果对比

    Figure  6.  Comparison of fitted effects

    图  5  振动峰值分布图

    Figure  5.  Peak vibration distribution diagram

    图  7  振动场三维拟合效果图

    Figure  7.  3D fitting diagram of vibration field

    图  8  1#测点振动信号时频分布

    Figure  8.  Time frequency distribution of measuring point 1#

    图  9  7#测点振动信号时频分布

    Figure  9.  Time frequency distribution of measuring point 7#

    图  10  13#测点振动信号时频分布

    Figure  10.  Time frequency distribution of measuring point 13#

    图  11  19#测点振动信号时频分布

    Figure  11.  Time frequency distribution of measuring point 19#

    图  12  频率边际谱

    Figure  12.  Marginal spectrum

    图  13  质点位移

    Figure  13.  Particle displacement

    表  4  0° 测线振动速度

    Table  4.   Data of vibration velocity of measuring line 0°

    测点 l/m VX/(cm·s−1) fX/Hz VY/(cm·s−1) fY/Hz VZ/(cm·s−1) fZ/Hz V/(cm·s−1)
    19# 20 7.99 27.5 4.33 29.2 5.03 18.9 9.33
    20# 30 3.13 26.1 3.03 21.3 6.91 18.2 7.34
    21# 40 1.73 22.2 1.63 12.8 4.15 13.6 4.22
    22# 60 1.03 18.2 0.85 18.3 1.13 14.2 1.16
    23# 90 0.78 17.5 0.61 13.6 0.95 13.7 0.54
    下载: 导出CSV

    表  1  90° 测线振动速度

    Table  1.   Data of vibration velocity of measuring line 90°

    测点 l/m VX/(cm·s−1) fX/Hz VY/(cm·s−1) fY/Hz VZ/(cm·s−1) fZ/Hz V/(cm·s−1)
    1# 20 7.14 8.3 6.32 8.2 9.05 15.3 13.15
    2# 30 5.32 8.0 5.15 8.6 7.85 16.2 10.79
    3# 40 2.95 8.1 3.17 58.5 5.39 18.9 7.60
    4# 60 1.44 8.0 2.37 60.4 2.31 15.4 3.57
    5# 90 2.58 7.9 1.85 7.9 3.94 13.8 1.90
    6# 130
    下载: 导出CSV

    表  3  30° 测线振动速度

    Table  3.   Data of vibration velocity of measuring line 30°

    测点 l/m VX/(cm·s−1) fX/Hz VY/(cm·s−1) fY/Hz VZ/(cm·s−1) fZ/Hz V/(cm·s−1)
    13# 20 8.46 15.5 6.96 15.2 6.56 22.9 11.86
    14# 30 3.19 18.1 1.82 23.5 9.46 15.1 9.68
    15# 40 2.54 17.5 0.91 16.7 5.43 20.3 6.52
    16# 60 1.32 20.1 0.99 8.8 2.22 16.1 2.79
    17# 90 0.85 16.6 0.75 18.0 1.40 19.7 1.53
    18# 130 0.36 19.1 0.38 17.3 0.54 17.9 0.65
    下载: 导出CSV

    表  2  60° 测线振动速度

    Table  2.   Data of vibration velocity of measuring line 60°

    测点 l/m VX/(cm·s−1) fX/Hz VY/(cm·s−1) fY/Hz VZ/(cm·s−1) fZ/Hz V/(cm·s−1)
    7# −20 5.37 8.0 4.58 61.2 8.77 13.7 9.01
    8# −30 4.33 17.7 3.71 60.6 7.92 14.0 6.31
    9# −40 4.76 16.8 2.41 16.0 2.41 13.8 5.17
    10# −60 1.35 13.5 1.09 7.9 0.81 20.2 1.50
    11# −90 1.00 12.0 0.74 8.3 1.08 16.8 1.32
    12# 130
    下载: 导出CSV
  • [1] 范照伟. 全球天然气发展格局及我国天然气发展方向分析 [J]. 中国矿业, 2018, 27(4): 11–16; 22

    FAN Zhaowei. Global natural gas development pattern and the analysis of development direction of natural gas in China [J]. China Mining Magazine, 2018, 27(4): 11–16; 22
    [2] 帅健. 美国油气管道事故及其启示 [J]. 油气储运, 2010, 29(11): 806–809. DOI: 10.6047/j.issn.1000-8241.2010.11.002

    SHUAI Jian. Oil and gas pipeline accident in the United States and its enlightenment [J]. Oil and Gas Storage and Transportation, 2010, 29(11): 806–809. DOI: 10.6047/j.issn.1000-8241.2010.11.002
    [3] 胡灯明, 骆晖. 国内外天然气管道事故分析 [J]. 石油工业技术监督, 2009(9): 8–12. DOI: 10.3969/j.issn.1004-1346.2009.09.002

    HU Dengming, LUO Hui. Case analysis of oil and gas pipeline accidents at home and abroad [J]. Technology Supervision in Petroleum Industry, 2009(9): 8–12. DOI: 10.3969/j.issn.1004-1346.2009.09.002
    [4] YANG S, FANG Q, ZHANG Y, et al. An integrated quantitative hazard analysis method for natural gas jet release from underground gas storage caverns in salt rock. Ⅰ: Models and validation [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 74–81. doi: 10.1016/j.jlp.2012.09.008
    [5] LOWESMITH B J, HANKINSON G. Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures [J]. Process Safety and Environmental Protection, 2013, 91(1): 101–111.
    [6] BARALDI D, KOTCHOURKO A, LELYAKIN A, et al. An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel [J]. International Journal of Hydrogen Energy, 2009, 34(18): 7862–7872. doi: 10.1016/j.ijhydene.2009.06.055
    [7] GALLEGO E, MIGOYA E, MARTIN-VALDEPENAS J M, et al. An intercomparison exercise on the capabilities of CFD models to predict distribution and mixing of H2 in a closed vessel [J]. International Journal of Hydrogen Energy, 2007, 32(13): 2235–2245. doi: 10.1016/j.ijhydene.2007.04.009
    [8] SU Huayou. Analysis of characteristics of compound vibration and effects to surrounding gas pipeline caused by impact and explosion [J]. Procedia Engineering, 2011, 26: 1835-1843.
    [9] MAHDAVI H, KENNY S, PHILLIPS R, et al. Influence of geotechnical loads on local buckling behavior of buried pipelines [C]//2008 7th International Pipeline Conference. American Society of Mechanical Engineers, 2008: 543–551.
    [10] 李洪涛, 卢文波, 舒大强, 等. 爆破地震波的能量衰减规律研究 [J]. 岩石力学与工程学报, 2010, 29(S1): 3364–3369

    LI Hongtao, LU Wenbo, SHU Daqiang, et al. Study of energy attenuation law of blast-induced seismic wave [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3364–3369
    [11] 吕涛, 石永强, 黄诚, 等. 非线性回归法求解爆破振动速度衰减公式参数 [J]. 岩土力学, 2007(9): 1871–1878. DOI: 10.3969/j.issn.1000-7598.2007.09.019

    LYU Tao, SHI Yongqiang, HUANG Cheng, et al. Study on attenuation parameters of blasting vibrationby nonlinear regression analysis [J]. Rock and Soil Mechanics, 2007(9): 1871–1878. DOI: 10.3969/j.issn.1000-7598.2007.09.019
    [12] 周辉, 龙源, 钟明寿, 等. 基于双参数MP算法的不同孔深爆炸地震波特性研究 [J]. 振动与冲击, 2016, 35(18): 76–81. DOI: 10.13465/j.cnki.jvs.2016.18.013

    ZHOU Hui, LONG Yuan, ZHONG Mingshou, et al. Characteristics analysis of explosion seismic waves with different hole depth based on the method of double parameters matching pursuit [J]. Journal of Vibration and Shock, 2016, 35(18): 76–81. DOI: 10.13465/j.cnki.jvs.2016.18.013
    [13] 闫孔明, 刘飞成, 朱崇浩, 等. 地震作用下含倾斜软弱夹层斜坡场地的动力响应特性研究 [J]. 岩石力学与工程学报, 2017, 36(11): 2686–2698

    YAN Kongming, LIU Feicheng, ZHU Chonghao, et al. Dynamic responses of slopes with intercalated soft layers under seismic excitations [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2686–2698
    [14] 梅比, 汪旭光, 杨仁树. 基于改进MP-WVD算法的核电厂建设爆破振动信号处理方法[J]. 爆炸与冲击, 2019, 39(4): 045201. DOI: 10.11883/bzycj-2018-0055.

    MEI Bi, WANG Xuguang, YANG Renshu. Blasting vibration signal analysis technology of construction of nuclear power plant based on improved MP-WVD algorithm [J]. Explosion and Shock Waves, 2019, 39(4): 045201. DOI: 10.11883/bzycj-2018-0055.
  • 加载中
推荐阅读
钨纤维增强金属玻璃复合材料的长杆弹斜侵彻/穿甲性能
章浪 等, 爆炸与冲击, 2025
活性材料与炸药环状复合内爆的准静态压力计算方法
朱剑雷 等, 爆炸与冲击, 2025
含煤基固废漂珠低爆速乳化炸药的爆炸特性和热安全性
韦箫 等, 爆炸与冲击, 2025
不同点火方式下hmx基pbx炸药反应演化过程的特征分析
楼建锋 等, 爆炸与冲击, 2024
椭圆截面战斗部爆炸驱动破片作用过程的数值模拟
邓宇轩 等, 高压物理学报, 2022
Kevlar纤维及碳纤维背衬下sic陶瓷和弹丸的破碎特性
马铭辉 等, 高压物理学报, 2023
Jo-9c(ⅲ)炸药的飞片冲击起爆判据参数拟合
贺翔 等, 高压物理学报, 2023
Triazoles in medicinal chemistry: physicochemical properties, bioisosterism, and application
Guan, Qianwen et al., JOURNAL OF MEDICINAL CHEMISTRY, 2024
Investigation on dynamic deformation and damage of steel ribbon wound vessel for hydrogen storage under fragment impact loading
JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME
Investigation on aging behavior and failure mechanism of blast-resistant polyurea coating in service environments
MATERIALS TODAY COMMUNICATIONS, 2025
Powered by
图(13) / 表(4)
计量
  • 文章访问数:  5523
  • HTML全文浏览量:  1795
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-13
  • 修回日期:  2018-06-01
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回