N2与CO2对合成气爆炸特性影响的实验研究

余明高 韦贝贝 郑凯

余明高, 韦贝贝, 郑凯. N2与CO2对合成气爆炸特性影响的实验研究[J]. 爆炸与冲击, 2019, 39(6): 065401. doi: 10.11883/bzycj-2018-0131
引用本文: 余明高, 韦贝贝, 郑凯. N2与CO2对合成气爆炸特性影响的实验研究[J]. 爆炸与冲击, 2019, 39(6): 065401. doi: 10.11883/bzycj-2018-0131
YU Minggao, WEI Beibei, ZHENG Kai. Effect of inert gas addition on syngas explosion[J]. Explosion And Shock Waves, 2019, 39(6): 065401. doi: 10.11883/bzycj-2018-0131
Citation: YU Minggao, WEI Beibei, ZHENG Kai. Effect of inert gas addition on syngas explosion[J]. Explosion And Shock Waves, 2019, 39(6): 065401. doi: 10.11883/bzycj-2018-0131

N2与CO2对合成气爆炸特性影响的实验研究

doi: 10.11883/bzycj-2018-0131
基金项目: 国家自然科学基金(U1361205,51574111,50974055);煤矿灾害动力学与控制国家重点实验室自主研究课题(2011DA 105287-ZD201401)
详细信息
    作者简介:

    余明高(1963- ),男,教授,13333910808@126.com

    通讯作者:

    郑 凯(1989- ),男,讲师,zkcqu@cqu.edu.cn

  • 中图分类号: O381; X932

Effect of inert gas addition on syngas explosion

  • 摘要: 为了研究惰性气体(氮气及二氧化碳)对合成气爆炸特性的影响,利用20 L球形爆炸仪器,开展不同体积分数氮气与二氧化碳作用下不同当量比合成气的爆炸实验,从爆炸峰值压力、爆炸压力到达峰值时间、爆炸指数方面分析惰性气体对合成气爆炸特性的影响。研究结果表明:惰性气体体积分数的增加会降低合成气的爆炸压力和爆炸指数,推迟爆炸压力到达峰值的时间;在相同体积分数下,CO2比N2能更有效地降低合成气的爆炸峰值压力和爆炸指数,减小爆炸反应的剧烈程度,CO2在抑制合成气爆炸方面比N2的效果明显。
  • 图  1  20 L球形爆炸测试系统

    Figure  1.  Test system with a 20-L spherical explosion vessel

    图  2  添加惰性气体后合成气爆炸压力的变化

    Figure  2.  Pressure evolution during syngas explosion with inert gas

    图  3  添加惰性气体后爆炸峰值压力的变化

    Figure  3.  Maximum pressure during syngas explosionwith inert gas

    图  4  添加惰性气体后压力到达峰值的时间

    Figure  4.  Time to peak pressure during syngas explosion with inert gas

    图  5  添加惰性气体后爆炸指数的变化

    Figure  5.  Deflagration index during syngas explosionwith inert gas

    表  1  不同实验工况下气体体积分数

    Table  1.   Volume fraction of gases under different experimental conditions

    $ {{\textit{φ}}_{\rm{inert}}} $/% $ {\textit{φ}}_{{{\rm H}_{2}}}\!,{{\textit{φ}}_{\rm{CO}}} $/% ${\textit{φ}}_{\rm{air}} $/% ${\textit{φ}}_{{{\rm H}_{2}}}\!,{{\textit{φ}}_{\rm{CO}}} $/% ${\textit{φ}}_{\rm{air}} $/% ${\textit{φ}}_{{{\rm H}_2}}\!,{{\textit{φ}}_{\rm{CO}}} $/% ${\textit{φ}}_{\rm{air}} $/% ${\textit{φ}}_{{{\rm H}_2}} \!,{{\textit{φ}}_{\rm{CO}}}$/% ${\textit{φ}}_{\rm{air}} $/%
    Φ=0.5 Φ=1.0 Φ=1.5 Φ=2.0
    0 8.68 82.64 14.79 70.42 19.33 61.34 22.83 54.34
    5.00 8.25 78.50 14.05 66.90 18.36 58.28 21.69 51.62
    10.00 7.81 74.38 13.31 63.38 17.39 55.22 20.55 48.90
    15.00 7.38 70.24 12.57 59.86 16.43 52.14 19.41 46.19
    20.00 6.94 66.12 11.83 56.34 15.46 49.08 18.26 43.48
    25.00 6.51 61.98 11.09 52.82 14.49 46.02 17.12 40.76
    下载: 导出CSV

    表  2  添加惰性气体后峰值压力下降值

    Table  2.   Decrease of peak pressure during syngas explosion with inert gas

    Φ惰性气体Δpmax/MPa
    5%10%15%20%25%
    0.5N20.009 370.021 560.042 670.053 650.100 34
    CO20.025 120.051 370.077 720.114 300.153 89
    1.0N20.002 570.011 980.028 530.047 040.062 88
    CO20.019 070.044 820.073 770.104 400.123 47
    1.5N20.012 550.020 560.043 340.073 250.084 23
    CO20.020 110.056 380.096 890.123 860.161 27
    2.0N20.020 050.037 430.057 970.076 60.091 45
    CO20.043 070.070 910.112 810.137 910.143 39
    下载: 导出CSV

    表  3  添加惰性气体后压力到达峰值时间的延迟

    Table  3.   Delay of peak pressure time during syngas explosion with inert gas

    Φ惰性气体ΔT/s
    5%10%15%20%25%
    0.5N20.002 40.007 20.010 00.015 20.027 7
    CO20.004 20.009 40.011 40.024 80.037 6
    1.0N20.004 80.007 80.012 80.018 00.022 0
    CO20.009 40.012 20.015 60.022 20.026 8
    1.5N20.002 60.004 00.007 40.014 00.017 0
    CO20.006 40.009 40.013 20.016 40.019 5
    2.0N20.001 80.004 80.008 60.014 60.017 5
    CO20.007 80.011 20.013 80.015 70.021 2
    下载: 导出CSV

    表  4  添加N2后爆炸指数相比于添加CO2后爆炸指数的差值

    Table  4.   Difference between explosion indexeswith N2 and CO2

    ΦΔK
    5%10%15%20%25%
    0.54.546 125.364 576.455 348.001 463.636 89
    1.05.092 247.546 1210.912 1513.641 2810.909 22
    1.522.727 6624.549 0426.185 9427.276 7223.641 28
    2.04.546 128.183 0219.095 1630.004 3921.822 83
    下载: 导出CSV
  • [1] JO Y D, CROWL D A. Explosion characteristics of hydrogen-air mixtures in a spherical vessel [J]. Process Safety Progress, 2010, 29(3): 216–23. DOI: 10.1002/prs.10370.
    [2] TANG C, HUANG Z, JIN C, et al. Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures [J]. International Journal of Hydrogen Energy, 2009, 34(1): 554–561. DOI: 10.1016/j.ijhydene.2008.10.028.
    [3] CAMMAROTA F, SARLI V D, SALZANO E, et al. Measurements of pressure and flame speed during explosions of CH4/O2/N2/CO2 mixtures [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 771–774. DOI: 10.1016/j.jlp.2016.06.005.
    [4] BURBANO H J, PAREJA J, AMELL A A. Laminar burning velocities and flame stability analysis of H2/CO/air mixtures with dilution of N2 and CO2 [J]. International Journal of Hydrogen Energy, 2011, 36(4): 3232–3242. DOI: 10.1016/j.ijhydene.2010.11.089.
    [5] VU T M, PARK J, KWON O B, et al. Effects of diluents on cellular instabilities in outwardly propagating spherical syngas-air premixed flames [J]. International Journal of Hydrogen Energy, 2010, 35(8): 3868–3880. DOI: 10.1016/j.ijhydene.2010.01.091.
    [6] PRATHAP C, RAY A, RAVI M R. Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H2-CO mixtures at atmospheric condition [J]. Combustion and Flame, 2012, 159(2): 482–492. DOI: 10.1016/j.combustflame.2011.08.006.
    [7] XIE Y, WANG J, XU N, et al. Comparative study on the effect of CO2 and H2O dilution on laminar burning characteristics of CO/H2/air mixtures [J]. International Journal of Hydrogen Energy, 2014, 39(7): 3450–3458. DOI: 10.1016/j.ijhydene.2013.12.037.
    [8] 孙绍增, 孟顺, 赵义军, 等. 水蒸气纯氧条件下合成气燃烧特性 [J]. 化工学报, 2015, 66(12): 5119–5126. DOI: 10.11949/j.issn.0438-1157.20150725.

    SUN Shaozeng, MENG Shun, ZHAO Yijun, et al. Combustion characteristics of syngas under oxygen steam conditions [J]. CIESC Journal, 2015, 66(12): 5119–5126. DOI: 10.11949/j.issn.0438-1157.20150725.
    [9] WANG Z H, WENG W B, HE Y, et al. Effect of H2/CO ratio and N2/CO2 dilution rate on laminar burning velocity of syngas investigated by direct measurement and simulation [J]. Fuel, 2015, 141(1): 285–292. DOI: 10.1016/j.fuel.2014.10.040.
    [10] ZHANG Y, SHEN W, ZHANG H, et al. Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames [J]. Fuel, 2015, 157: 115–121. DOI: 10.1016/j.fuel.2015.05.007.
    [11] 安江涛, 蒋勇, 邱榕, 等. CO2稀释及合成气构成对预混燃烧特性的影响 [J]. 燃烧科学与技术, 2011, 17(5): 437–442.

    AN Jiangtao, JIANG Yong, QIU Rong, et al. Effect of CO2-diluted oxygen and syngas composition on characteristics of premixed flame [J]. Journal of Combustion Science and Technology, 2011, 17(5): 437–442.
    [12] MOVILEANU C, GASA V, RAZUS D. Explosion of gaseous ethylene-air mixtures in closed cylindrical vessels with central ignition [J]. Journal of Hazardous Materials, 2012, 235-236(2): 108–115. DOI: 10.1016/j.jhazmat.2012.07.028.
    [13] RAZUS D, BRINZEA V, MITU M, et al. Explosion characteristics of LPG-air mixtures in closed vessels [J]. Journal of Hazardous Materials, 2009, 165(1): 1248–1252. DOI: 10.1016/j.jhazmat.2008.10.082.
    [14] RAZUS D, MOVILEANU C, OANCEA D. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures [J]. Journal of Hazardous Materials, 2007, 139(1): 1–8. DOI: 10.1016/j.jhazmat.2006.05.103.
    [15] PHYLAKTOU H N, ANDREWS G E, HERATH P. Fast flame speeds and rates of pressure rise in the initial period of gas explosions in large L/D cylindrical enclosures [J]. Journal of Loss Prevention in the Process Industries, 1990, 3(4): 355–364. DOI: 10.1016/0950-4230(90)80005-U.
    [16] 王颖. 20 L球形密闭装置内惰性气体抑制瓦斯爆炸实验研究 [D]. 太原: 中北大学, 2012: 22−23.
    [17] 贾宝山, 温海燕, 梁运涛, 等. 煤矿巷道内N2 及 CO2抑制瓦斯爆炸的机理特性[J]. 煤炭学报, 2013, 38(3): 361−366. DOI: 10.13225/j.cnki.jccs.2013.03.019.

    JIA Baoshan, WEN Haiyan, LIANG Yuntao, et al. Mechanism characteristics of CO2 and N2 inhibiting methane explosions in coal mine roadways [J]. Journal of China Coal Society, 2013, 38(3): 361−366. DOI: 10.13225/j.cnki.jccs.2013.03.019.
    [18] LI M A, YANG X, DENG J, et al. Effect of CO2 on explosion limits of flammable gases in goafs [J]. International Journal of Mining Science and Technology, 2010, 20(2): 193–197. DOI: 10.1016/S1674-5264(09)60183-6.
    [19] 余明高, 朱新娜, 裴蓓, 等. 二氧化碳-超细水雾抑制甲烷爆炸实验研究 [J]. 煤炭学报, 2015, 40(12): 2843–2848. DOI: 10.13225/j.cnki.jccs.2015.0068.

    YU Minggao, ZHU Xinna, PEI Bei, et al. Experimental study on methane explosion suppression using carbon dioxide and ultra-fine water mist [J]. Journal of Coal Science Engineering, 2015, 40(12): 2843–2848. DOI: 10.13225/j.cnki.jccs.2015.0068.
    [20] XIE Y, WANG J, CAI X, et al. Pressure history in the explosion of moist syngas/air mixtures [J]. Fuel, 2016, 185: 18–25. DOI: 10.1016/j.fuel.2016.07.072.
    [21] 张迎新, 吴强, 刘传海, 等. 惰性气体N2/CO2抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.

    ZHANG Yingxin, WU Qiang, LIU Chuanhai, et al. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2 [J]. Explosion and Shock Waves, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.
    [22] SHANG R, ZHANG Y, ZHU M, et al. Laminar flame speed of CO2 and N2 diluted H2/CO/air flames [J]. International Journal of Hydrogen Energy, 2016, 41(33): 15056–15067. DOI: 10.1016/j.ijhydene.2016.05.064.
    [23] HAN M, AI Y, CHEN Z, et al. Laminar flame speeds of H2/CO with CO2 dilution at normal and elevated pressures and temperatures [J]. Fuel, 2015, 148: 32–38. DOI: 10.1016/j.fuel.2015.01.083.
    [24] CHEN Z, TANG C, FU J, et al. Experimental and numerical investigation on diluted DME flames: thermal and chemical kinetic effects on laminar flame speeds [J]. Fuel, 2012, 102(3): 567–573. DOI: 10.1016/j.fuel.2012.06.003.
    [25] AUNG K T, HASSAN M I, FAETH G M. Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure [J]. Combustion and Flame, 1997, 109(1/2): 1–24. DOI: 10.1016/S0010-2180(96)00151-4.
    [26] BRADLEY D, MITCHESON A. Mathematical solutions for explosions in spherical vessels [J]. Combustion and Flame, 1976, 26(2): 201–217. DOI: 10.1016/0010-2180(76)90072-9.
    [27] DAHOE A E, ZEVENBERGEN J F, LEMKOWITZ S M, et al. Dust explosions in spherical vessels: the role of flame thickness in the validity of the ‘cube-root law’ [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(9): 33–44. DOI: 10.1016/0950-4230(95)00054-2.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  5637
  • HTML全文浏览量:  1685
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-19
  • 修回日期:  2018-06-26
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回