不同泄压条件对方管内爆炸压力特性的影响

李乾 冯梦梦 马力 王玉杰 陈先锋 何松

李乾, 冯梦梦, 马力, 王玉杰, 陈先锋, 何松. 不同泄压条件对方管内爆炸压力特性的影响[J]. 爆炸与冲击, 2019, 39(7): 072202. doi: 10.11883/bzycj-2018-0132
引用本文: 李乾, 冯梦梦, 马力, 王玉杰, 陈先锋, 何松. 不同泄压条件对方管内爆炸压力特性的影响[J]. 爆炸与冲击, 2019, 39(7): 072202. doi: 10.11883/bzycj-2018-0132
LI Qian, FENG Mengmeng, MA Li, WANG Yujie, CHEN Xianfeng, HE Song. Influence of different pressure relief conditionson explosion pressure in square pipeline[J]. Explosion And Shock Waves, 2019, 39(7): 072202. doi: 10.11883/bzycj-2018-0132
Citation: LI Qian, FENG Mengmeng, MA Li, WANG Yujie, CHEN Xianfeng, HE Song. Influence of different pressure relief conditionson explosion pressure in square pipeline[J]. Explosion And Shock Waves, 2019, 39(7): 072202. doi: 10.11883/bzycj-2018-0132

不同泄压条件对方管内爆炸压力特性的影响

doi: 10.11883/bzycj-2018-0132
基金项目: 国家重点研发计划(2017YFC0804907)
详细信息
    作者简介:

    李 乾(1993- ),男,硕士研究生,256522@whut.edu.cn

    通讯作者:

    何 松(1987- ),男,博士,讲师,hsong@whut.edu.cn

  • 中图分类号: O389

Influence of different pressure relief conditionson explosion pressure in square pipeline

  • 摘要: 为研究泄压膜约束条件对甲烷/空气预混气体爆炸压力特性的影响,在方形火焰燃烧传播测试管道中布置压力传感器,开展不同泄压膜材料、泄压膜层数及泄压口位置实验。结果表明:牛皮纸和聚丙烯薄膜约束泄爆过程中,每增加一层泄压膜,管道内最大泄爆压力平均上升11.2%和12.3%。各强度泄压膜约束条件下,管道内最大泄爆压力随着泄压口位置接近点火端,均呈现Z形规律,当泄压口设置在距尾部端面0.25 m时,各曲线达到最小值,当泄压口设置在距尾部端面0.50 m时,各曲线出现最大值。
  • 图  1  实验系统

    Figure  1.  Experimental system

    图  2  等容爆炸压力特性曲线

    Figure  2.  Pressure and its rise rate at constant volume

    图  3  火焰发展系列图像

    Figure  3.  Images of flame propagation

    图  4  不同泄压膜强度条件下的爆炸压力分布

    Figure  4.  Explosion pressure at different pressure relief membrane strengths

    图  5  爆炸压力上升速率分布

    Figure  5.  Rate of explosion pressure rise

    图  6  不同泄压口位置条件下最大泄爆压力分布

    Figure  6.  Peak overpressures at different venting locations

    图  7  不同泄压口位置条件下破膜时间分布

    Figure  7.  Rupture time at different venting locations

  • 刘洋, 高文傲, 李登科, 等. 基于光纤传感技术的易燃易爆气体泄漏监测研究 [J]. 爆破, 2017, 34(4): 22–26. DOI: 10.3963/j.issn.1001-487X.2017.04.005.

    LIU Yang, GAO Wenao, LI Dengke, et al. Research on leakage monitoring of flammable and explosive [J]. Blasting, 2017, 34(4): 22–26. DOI: 10.3963/j.issn.1001-487X.2017.04.005.
    周立江, 范进, 丁建国. 气云爆炸下钢筋混凝土板毁伤的数值分析 [J]. 爆破, 2017, 34(4): 143–148. DOI: 10.3963/j.issn.1001-487X.2017.04.026.

    ZHOU Lijiang, FAN Jin, DING Jianguo. Numerical simulation on damage assessment of RC slabs under vapour cloud explosion [J]. Blasting, 2017, 34(4): 143–148. DOI: 10.3963/j.issn.1001-487X.2017.04.026.
    杜扬, 王世茂, 齐圣, 等. 油气在顶部含弱约束结构受限空间内的爆炸特性 [J]. 爆炸与冲击, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08.

    DU Yang, WANG Shimao, QI Sheng, et al. Explosion of gasoline/air mixture in confined space with weakly constrained structure at the top [J]. Explosion and Shock Waves, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08.
    王世茂, 杜扬, 李国庆, 等. 开口率和点火源类型对汽油蒸气泄压爆炸内场超压荷载的影响 [J]. 化工进展, 2018, 37(1): 23–31. DOI: 10.16085/j.issn.1000-6613.2017-0809.

    WANG Shimao, DU Yang, LI Guoqing, et al. Effect of vent size and the ignition source type on the internal overpressure loading of vented gasoline-air mixture explosion [J]. Chemical Industry and Engineering Progress, 2018, 37(1): 23–31. DOI: 10.16085/j.issn.1000-6613.2017-0809.
    任少峰, 陈先锋, 王玉杰, 等. 泄压口比率对气体泄爆过程中的动力学行为的影响 [J]. 煤炭学报, 2011, 36(5): 830–833. DOI: 10.13225/j.cnki.jccs.2011.05.033.

    REN Shaofeng, CHEN Xianfeng, WANG Yujie, et al. Effect of pressure-orifice ratio on dynamic behavior during gas venting [J]. Journal of China Coal Society, 2011, 36(5): 830–833. DOI: 10.13225/j.cnki.jccs.2011.05.033.
    葛俊峰. 不同管道开口率下丙烷-空气预混火焰传播规律的研究 [J]. 内蒙古师范大学学报(自然科学汉文版), 2015, 44(6): 785–787. DOI: 10.3969/j.issn.1001-8735.2015.06.016.

    GE Junfeng. Investigation of the propagation law of premixed propane-air flame in the duct with different opening ratios [J]. Journal of Inner Mongolia Normal University (Natura Science Edition), 2015, 44(6): 785–787. DOI: 10.3969/j.issn.1001-8735.2015.06.016.
    BAO Q, FANG Q, ZHANG Y, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane–air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084.
    赵天辉, 高康华, 王明洋, 等. 方形容器爆燃泄放过程中的压力特性实验研究 [J]. 兵工学报, 2017, 38(4): 722–727. DOI: 10.3969/j.issn.1000-1093.2017.04.013.

    ZHAO Tianhui, GAO Kanghua, WANG Mingyang, et al. Experimental study of pressure characteristics during deflagration venting in a square vessel [J]. Acta Armamentarii, 2017, 38(4): 722–727. DOI: 10.3969/j.issn.1000-1093.2017.04.013.
    欧益宏, 李润, 袁广强, 等. 半封闭空间明火引燃油气特性实验 [J]. 爆炸与冲击, 2018, 38(2): 455–464. DOI: 10.11883/bzycj-2017-0117.

    OU Yihong, LI Run, YUAN Guangqiang, et al. Explosion of gasoline/air mixture ignited by pilot flame in semi-confined space [J]. Explosion and Shock Waves, 2018, 38(2): 455–464. DOI: 10.11883/bzycj-2017-0117.
    孙松, 王明洋, 高康华, 等. 大尺度泄爆构件对室内爆燃压力影响的实验研究 [J]. 爆炸与冲击, 2018, 38(2): 359–366. DOI: 10.11883/bzycj-2016-0211.

    SUN Song, WANG Mingyang, GAO Kanghua, et al. Experimental study on effect of large-scale explosion venting component on interior deglagration pressure [J]. Explosion and Shock Waves, 2018, 38(2): 359–366. DOI: 10.11883/bzycj-2016-0211.
    ZHANG Q, JIANG J, YOU M, et al. Experimental study on gas explosion and venting process in interconnected vessels [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1230–1237. DOI: 10.1016/j.jlp.2013.05.007.
    ZHANG K, WANG Z, JIANG J, et al. Effect of pipe length on methane explosion in interconnected vessels [J]. Process Safety Progress, 2016, 35(3): 241–247. DOI: 10.1002/prs.11819.
    曹勇, 郭进, 胡坤伦, 等. 点火位置对氢气-空气预混气体泄爆过程的影响 [J]. 爆炸与冲击, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.

    CAO Yong, GUO Jin, HU Kunlun, et al. Effect of ignition locations on vented explosion of premixed hydrogen-air mixtures [J]. Explosion and Shock Waves, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.
    师峥. 管道内预混可燃气体爆炸及其泄爆的数值模拟[D]. 太原: 中北大学, 2017: 47−49.
    陈鹏, 黄福军, 纪婧, 等. 管道由封闭向开口转化过程中预混火焰传播特性 [J]. 辽宁工程技术大学学报, 2015, 34(12): 1335–1339. DOI: 10.11956/j.issn.1008-0562.2015.12.002.

    CHEN Peng, HUANG Fujun, JI Jing, et al. Characteristics of gas premixed flame propagation in pipeline from sealing to opening [J]. Journal of Liaoning Technical University, 2015, 34(12): 1335–1339. DOI: 10.11956/j.issn.1008-0562.2015.12.002.
    ALEXIOU A, ANDREWS G E, PHYLAKTOU H. A Comparison between end-vented and side-vented gas explosions in large L/D vessels [J]. Process Safety and Environmental Protection, 1997, 75(1): 9–13. DOI: 10.1205/095758297528715.
    YU M, WAN S, ZHENG K, et al. Effect of side venting areas on the methane/air explosion characteristics in a pipeline [J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 123–130. DOI: 10.1016/j.jlp.2018.03.010.
    胡俊, 浦以康, 万士昕, 等. 柱形容器开口泄爆过程中压力发展特性的实验研究 [J]. 爆炸与冲击, 2001, 21(1): 47–52. doi: 10.3321/j.issn:1001-1455.2001.01.010

    HU Jun, PU Yikang, WAN Shixin, et al. Experimental investigations of pressure development during explosion vent from cylindrical vessels [J]. Explosion and Shock Waves, 2001, 21(1): 47–52. doi: 10.3321/j.issn:1001-1455.2001.01.010
    胡俊, 万士昕, 浦以康, 等. 柱形容器开口泄爆过程中的火焰传播特性 [J]. 爆炸与冲击, 2004, 24(4): 330–336. doi: 10.3321/j.issn:1001-1455.2004.04.007

    HU Jun, WAN Shixin, PU Yikang, et al. The characteristics of flame propagation during explosion venting from cylindrical vessel [J]. Explosion and Shock Waves, 2004, 24(4): 330–336. doi: 10.3321/j.issn:1001-1455.2004.04.007
    高东志, 卫海桥, 周磊, 等. 封闭空间中火焰-冲击波相互作用及缸内压力波动现象分析 [J]. 红外与激光工程, 2017, 46(2): 31–36. DOI: 10.3788/IRLA201746.0239004.

    GAO Dongzhi, WEI Haiqiao, ZHOU Lei, et al. Experimental study of flame-shock wave interaction and cylinder pressure oscillation in confined space [J]. Infrared and Laser Engineering, 2017, 46(2): 31–36. DOI: 10.3788/IRLA201746.0239004.
    赵衡阳. 气体和粉尘爆炸原理[M]. 北京: 北京理工大学出版社, 1996: 230.
    闫兴清. 高静态动作压力下粉尘爆炸泄放特性研究[D]. 大连: 大连理工大学, 2014: 39−40.
    卢捷, 宁建国, 王成, 等. 煤气火焰传播规律及其加速机理研究 [J]. 爆炸与冲击, 2004, 24(4): 305–311. doi: 10.3321/j.issn:1001-1455.2004.04.003

    LU Jie, NING Jianguo, WANG Cheng, et al. Study on flame propagation and acceleration mechanism of city coal gas [J]. Explosion and Shock Waves, 2004, 24(4): 305–311. doi: 10.3321/j.issn:1001-1455.2004.04.003
  • 加载中
图(7)
计量
  • 文章访问数:  6120
  • HTML全文浏览量:  2020
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 修回日期:  2018-08-24
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回