• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于重球触地实验的空区塌落振动分析及治理

仪海豹 张西良 杨海涛 李明 高琪琪 金科

高顺受, 陈素年, 冷观松, 韩俊玉. 一种小型轨道炮的能源系统[J]. 爆炸与冲击, 1987, 7(2): 169-174. doi: 10.11883/1001-1455(1987)02-0169-6
引用本文: 仪海豹, 张西良, 杨海涛, 李明, 高琪琪, 金科. 基于重球触地实验的空区塌落振动分析及治理[J]. 爆炸与冲击, 2019, 39(7): 074101. doi: 10.11883/bzycj-2018-0160
YI Haibao, ZHANG Xiliang, YANG Haitao, LI Ming, GAO Qiqi, JIN Ke. Goaf collapse vibration analysis and disposal based on a experiment of heavy ball touchdown[J]. Explosion And Shock Waves, 2019, 39(7): 074101. doi: 10.11883/bzycj-2018-0160
Citation: YI Haibao, ZHANG Xiliang, YANG Haitao, LI Ming, GAO Qiqi, JIN Ke. Goaf collapse vibration analysis and disposal based on a experiment of heavy ball touchdown[J]. Explosion And Shock Waves, 2019, 39(7): 074101. doi: 10.11883/bzycj-2018-0160

基于重球触地实验的空区塌落振动分析及治理

doi: 10.11883/bzycj-2018-0160
基金项目: 国家重点研发计划(2017YFC0602902)
详细信息
    作者简介:

    仪海豹(1987- ),男,硕士,工程师,hang_tianfeiji@126.com

  • 中图分类号: O382; TD73

Goaf collapse vibration analysis and disposal based on a experiment of heavy ball touchdown

  • 摘要: 根据相似理论,以重球落地实验模拟采空区坍塌进而指导采空区治理为出发点,在振动波动特性分析的基础上,分别开展了质量为4 kg和10 kg的重球从1.0、1.5和2.0 m的高度落地的峰值振动速度测试实验;首次提出了累计振动速度衰减率和相对能量比概念;以普氏拱理论为基础,分析了采空区坍塌振动速度。研究表明:振动速度与重球质量和落地高度成正相关,且前者对累计衰减率的影响大于后者;随着测点距离的增大,振动速度整体表现为衰减趋势;重球质量为4 kg和10 kg时,在水平距离重球落地点3.0 m处的累计衰减率分别为79.79%~81.61%和79.95%~83.52%。不同介质交界面的反射和折射可引起振动速度的小幅度“跃增”。重球质量对振动能量衰减影响明显;质量越大,近区能量衰减越慢。采空区冒落体582.5~5 926.5 t,引起的振动速度远大于边坡安全允许值。采用“采空区顶板崩落+边坡削坡”方案进行治理后,边坡安全系数可达到1.26,消除采空区安全隐患。
  • 图  1  测点布置图

    Figure  1.  Measuring points layout

    图  2  现场实验照片

    Figure  2.  Field test photo

    图  3  不同测点的爆破峰值振动速度

    Figure  3.  Peak particle velocity of blasting vibration at different measuring points

    图  4  水平距离重球落地点0.5 m处测试得到的不同质量的重球从不同高度落地引起的地振动速度波形

    Figure  4.  Vibration velocity-time curves measured at the measuring point with the horizontal distance of 0.5 m away from the landing place of different-mass heavy balls free-falling from different heights

    图  5  对于不同的质量重球从不同高度落地累计振动速度衰减率与传播距离关系

    Figure  5.  Relations of cumulative attenuation rate and propagation distance for ground vibration induced by different-mass heavy balls free-falling from different heights and touching the ground

    图  6  应力波反射示意图

    Figure  6.  Schematic of stress wave reflection

    图  7  相对能量比随距离的变化

    Figure  7.  Variation of relative energy ratio with distance

    图  8  采空区位置剖面图

    Figure  8.  Section of goaf location

    图  9  平衡拱分析示意图

    Figure  9.  Schematic of balanced arch analysis

    图  10  设计治理后边坡剖面

    Figure  10.  Slope profile after goaf disposal

    图  11  采空区空间位置图

    Figure  11.  Goaf space location

    图  12  边坡安全系数计算模型

    Figure  12.  Calculation model of slope safety factor

    图  13  竖直应力等值线图

    Figure  13.  Vertical stress contour

    图  14  剪切应变率

    Figure  14.  Contour of shear strain rate

    表  1  振动测量数据

    Table  1.   Vibration measurement data

    重球质量/kg测点距离/m峰值振动速度/(cm·s−1)
    第1次第2次平均值第1次第2次平均值第1次第2次平均值
    高度 1.0 m 高度 1.5 m 高度 2.0 m
    40.57.0297.2627.1469.0068.4038.70510.08910.3310.210
    1.06.2156.6706.4436.7378.0227.3809.1208.6868.903
    2.02.3622.3712.3672.3742.7692.5723.6883.3153.502
    3.01.3261.3861.3561.5911.5061.5492.0022.0092.006
    4.01.3401.5471.4441.6031.5981.6011.7762.1991.988
    100.511.51412.93912.22714.44713.72114.08415.70815.61215.660
    1.011.74711.88611.81713.49213.86513.67914.71415.07514.895
    2.06.7826.2156.4997.2557.1347.1958.4428.2578.350
    3.01.8812.2702.0762.0952.5462.3213.1433.1363.140
    4.02.5322.8792.7063.0013.1013.0513.0733.6213.347
    下载: 导出CSV

    表  2  对于不同的落球条件在不同测点得到的累计振动速度衰减率

    Table  2.   Cumulative vibration attenuation rates at different measuring points for different falling ball conditions

    重球质量/kg测点距离/m振动速度/(cm·s−1)累计衰减率/%振动速度/(cm·s−1)累计衰减率/%振动速度/(cm·s−1)累计衰减率/%
    高度 1.0 m 高度 1.5 m 高度 2.0 m
    40.57.14608.705010.2100
    1.06.4439.847.38015.228.90312.80
    2.02.36766.882.57270.453.50265.70
    3.01.35681.021.54982.212.00680.35
    4.01.44479.791.60181.611.98880.53
    100.512.227014.084015.6600
    1.011.8173.3513.6792.8814.8954.89
    2.06.49946.857.19548.918.35046.68
    3.02.07683.022.32183.523.14079.95
    4.02.70677.873.05178.343.34778.63
    下载: 导出CSV

    表  3  相对能量比

    Table  3.   Relative energy ratio

    重球质量/kg测点距离/mv2/(cm·s−1)2k/%v2/(cm·s−1)2k/%v2/(cm·s−1)2k/%
    高度 1.0 m 高度 1.5 m 高度 2.0 m
    40.551.0710075.78100104.24100
    1.041.5181.2954.4671.8779.2676.04
    2.05.6010.976.628.7312.2611.76
    3.01.843.602.403.174.023.86
    4.02.094.082.563.383.953.79
    100.5149.50100198.36100245.24100
    1.0139.6493.41187.1294.33221.8690.47
    2.042.2428.2551.7726.1069.7228.43
    3.04.312.885.392.729.864.02
    4.07.324.909.314.6911.204.57
    下载: 导出CSV
  • [1] 杜坤, 李夕兵, 刘科伟, 等. 采空区危险性评价的综合方法及工程应用 [J]. 中南大学学报(自然科学版), 2011, 42(9): 2802–2811.

    DU Kun, LI Xibing, LIU Kewei, et al. Comprehensive evaluation of underground goaf risk and engineering application [J]. Journal of Central South University (Science and Technology), 2011, 42(9): 2802–2811.
    [2] 徐恒, 王贻明, 吴爱祥, 等. 基于尖点突变理论的充填体下采空区安全顶板厚度计算模型 [J]. 岩石力学与工程学报, 2017, 36(3): 579–586. DOI: 10.13722/j.cnki.jrme.2016.0199.

    XU Heng, WANG Yiming, WU Aixiang, et al. A computational model of safe thickness of roof under filling body based on cusp catastrophe theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 579–586. DOI: 10.13722/j.cnki.jrme.2016.0199.
    [3] 吴爱祥, 王贻明, 胡国斌. 采空区顶板大面积冒落的空气冲击波 [J]. 中国矿业大学学报, 2007, 36(4): 473–477. DOI: 10.3321/j.issn:1000-1964.2007.04.011.

    WU Aixiang, WANG Yiming, HU Guobin. Air shock wave induced by roof falling in a large scale in ultra-huge mined-area [J]. Journal of China University of Mining and Technology, 2007, 36(4): 473–477. DOI: 10.3321/j.issn:1000-1964.2007.04.011.
    [4] 刘晓明, 罗周全, 杨承祥, 等. 基于实测的采空区稳定性数值模拟分析 [J]. 岩土力学, 2007, 28(S1): 521–526.

    LIU Xiaoming, LUO Zhouquan, YANG Chengxiang, et al. Analysis of stability of cavity based on cavity monitoring [J]. Rock and Soil Mechanics, 2007, 28(S1): 521–526.
    [5] 付建新, 杜建华, 谭玉叶. 缓倾斜厚大矿体崩落法开采隐伏空区顶板冒落过程及机理研究 [J]. 采矿与安全工程学报, 2017, 34(5): 891–898. DOI: 10.13545/j.cnki.jmse.2017.05.010.

    FU Jianxin, DU Jianhua, TAN Yuye. The falling process and mechanism of concealed gob roof during the caving mining of the gently inclined heavy ore [J]. Journal of Mining and Safety Engineering, 2017, 34(5): 891–898. DOI: 10.13545/j.cnki.jmse.2017.05.010.
    [6] 吴启红, 万世明, 彭文祥. 一种多层采空区群稳定性的综合评价法 [J]. 中南大学学报(自然科学版), 2012, 43(6): 2324–2330.

    WU Qihong, WAN Shiming, PENG Wenxiang. A comprehensive evaluation method about stability of polylaminate goafs [J]. Journal of Central South University (Science and Technology), 2012, 43(6): 2324–2330.
    [7] 王凯兴, 潘一山, 窦林名. 摆型波传播过程块系岩体能量传递规律研究 [J]. 岩土工程学报, 2016, 38(12): 2309–2314. DOI: 10.11779/CJGE201612021.

    WANG Kaixing, PANYishan, DOU Linming. Energy transfer in block-rock mass during propagation of pendulum-type waves [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2309–2314. DOI: 10.11779/CJGE201612021.
    [8] 楼晓明, 周文海, 简文彬, 等. 微差爆破振动波速度峰值-位移分布特征的延时控制 [J]. 爆炸与冲击, 2016, 36(6): 839–846. DOI: 10.11883/1001-1455(2016)06-0839-08.

    LOU Xiaoming, ZHOU Wenhai, JIAN Wenbin, et al. Control of delay time characterized by distribution of peak velocity-displacement vibration of millisecond blasting [J]. Explosion and Shock Waves, 2016, 36(6): 839–846. DOI: 10.11883/1001-1455(2016)06-0839-08.
    [9] 李俊如, 高建光, 邵蔚, 等. 砂土中的强夯振动对周边环境的影响研究 [J]. 岩土力学, 2002, 23: 198–200. DOI: 10.3969/j.issn.1000-7598.2002.z1.057.

    LI Junru, GAO Jianguang, SHAO Wei, et al. Research on influence of dynamic compaction vibration of sand-soil on surroundings [J]. Rock and Soil Mechanics, 2002, 23: 198–200. DOI: 10.3969/j.issn.1000-7598.2002.z1.057.
    [10] 杨年华, 张乐. 爆破振动波叠加数值预测方法 [J]. 爆炸与冲击, 2012, 32(1): 84–90. DOI: 10.3969/j.issn.1001-1455.2012.01.015.

    YANG Nianhua, ZHANG Le. Blasting vibration waveform prediction method based on superposition principle [J]. Explosion and Shock Waves, 2012, 32(1): 84–90. DOI: 10.3969/j.issn.1001-1455.2012.01.015.
    [11] KOLSKY H. Stress waves in solids [M]. New York: Dover Publications, 1963.
    [12] RAYLEIGH L. On waves propagated along the plane surface of an elastic solid [J]. Proceedings of the London Mathematical Society, 1885, 17: 4–11. DOI: 10.1112/plms/s1-17.1.4.
    [13] ZHANG Z X, NAARTTIJÄRVI T. Reducing ground vibrations caused by underground blasts in LKAB Malmberget mine [J]. International Journal for Blasting and Fragmentation, 2005, 9(2): 61–78. DOI: 10.1080/13855140500140275.
    [14] RICKETTS T E, GOLDSMITH W. Dynamic properties of rocks and composite structural materials [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1970, 7(3): 315–335. DOI: 10.1016/0148-9062(70)90045-8.
    [15] 王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 2005.
    [16] 杨风威, 李海波, 齐三红, 等. 平面应力波在岩质边坡中的传播规律研究 [J]. 岩石力学与工程学报, 2015, 34(S1): 2623–2631. DOI: 10.13722/j.cnki.jrme.2013.1374.

    YANG Fengwei, LI Haibo, QI Sanhong, et al. Study of regularity of plane stress wave transmitting in rock slope [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2623–2631. DOI: 10.13722/j.cnki.jrme.2013.1374.
    [17] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010-2010 [S]. 北京: 中国建筑工业出版社, 2015: 18−19.
    [18] 黄庆享, 郑超. 巷道支护的自稳平衡圈理论 [J]. 岩土力学, 2016, 37(5): 1231–1236. DOI: 10.16285/j.rsm.2016.05.003.

    HUANG Qingxiang, ZHENG Chao. Theory of self-stable ring in roadway support [J]. Rock and Soil Mechanics, 2016, 37(5): 1231–1236. DOI: 10.16285/j.rsm.2016.05.003.
    [19] 赵国彦, 周礼, 李金跃, 等. 房柱法矿柱合理尺寸设计及矿块结构参数优选 [J]. 中南大学学报(自然科学版), 2014, 45(11): 3943–3948.

    ZHAO Guoyan, ZHOU Li, LI Jinyue, et al. Reasonable pillar size design and nugget structural parameters optimization in room-and-pillar mining [J]. Journal of Central South University (Science and Technology), 2014, 45(11): 3943–3948.
    [20] 杨仙, 张可能, 黎永索, 等. 深埋顶管顶力理论计算与实测分析 [J]. 岩土力学, 2013, 34(3): 757–761. DOI: 10.16285/j.rsm.2013.03.027.

    YANG Xian, ZHANG Keneng, LI Yongsuo, et al. Theoretical and experimental analyses of jacking force during deep-buried pipe jacking [J]. Rock and Soil Mechanics, 2013, 34(3): 757–761. DOI: 10.16285/j.rsm.2013.03.027.
    [21] YI Haibao, LIU Weizhou, ZHANG Xiliang, et al. Study on deformation mechanism of high stress and broken roadway and its controlling measures [J]. Applied Mechanics and Materials, 2014, 501−504: 1798–1803. DOI: 10.4028/www.scientific.net/AMM.501-504.
    [22] 王洪江, 李公成, 吴爱祥, 等. 龙首矿围岩流变特性理论分析及现场监测 [J]. 岩石力学与工程学报, 2014, 33(S2): 3676–3681. DOI: 10.13722/j.cnki.jrme.2014.s2.035.

    WANG Hongjiang, LI Gongcheng, WU Aixiang, et al. Theoretical analysis for rheological characteristics of surrounding rock and on-site monitoring in Longshou mine [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3676–3681. DOI: 10.13722/j.cnki.jrme.2014.s2.035.
    [23] 中华人民共和国住房和城乡建设部. 非煤露天矿边坡工程技术规范: GB 51016-2014 [S]. 北京: 中国计划出版社, 2014: 6−7.
  • 期刊类型引用(11)

    1. 肖云涛,崔正荣,鲍伟伟,王恒. 罗恩盆地露天采场爆破减振控噪技术研究与应用. 金属矿山. 2025(03): 121-127 . 百度学术
    2. 朱磊,陈能革. 某露天矿山爆破对民房的有害效应监测及控制措施. 现代矿业. 2022(02): 216-219 . 百度学术
    3. 顾红建,李明,仪海豹,陈能革. 和尚桥铁矿露天爆破孔间微差间隔优选试验研究. 现代矿业. 2022(06): 88-90+117 . 百度学术
    4. 李二宝,陈能革. 数码电子雷管微差爆破振动影响因素分析. 现代矿业. 2022(06): 245-248 . 百度学术
    5. 张西良,仪海豹,韩寒,李二宝,汪禹,杨海涛,周健. 延时间隔对爆破破岩的影响机制及应用研究. 金属矿山. 2022(07): 73-79 . 百度学术
    6. 曹占华,袁海平,李恒喆. 基于PCA-PNN的采空区多源指标危险性辨识. 中国安全生产科学技术. 2022(12): 104-109 . 百度学术
    7. 杨海涛,仪海豹,王广成,张西良,周健,李二宝. 单向初始荷载下爆破漏斗破坏效应试验研究. 金属矿山. 2021(03): 54-60 . 百度学术
    8. 杨海涛,李二宝,仪海豹,戴勇. 不同应力条件下组合孔爆破破岩规律数值模拟研究. 爆破. 2021(02): 88-94 . 百度学术
    9. 刘文胜,陈能革,朱末琳,仪海豹,李伟,谢亮波,邓国平. 数码雷管高精度延时对爆破振动影响试验研究. 金属矿山. 2021(09): 37-43 . 百度学术
    10. 王建华,陈能革,谢亮波,仪海豹,李二宝. 数码电子雷管不同延期时间爆破振动规律试验研究. 现代矿业. 2021(12): 140-143+148 . 百度学术
    11. 谢亮波,王铭,张西良,仪海豹,顾红建,江东平. 薄壁型钢混结构烟囱控制爆破拆除. 爆破. 2020(02): 75-79 . 百度学术

    其他类型引用(2)

  • 加载中
推荐阅读
典型战斗部侵彻爆炸下块石混凝土的遮弹层设计
吴昊 等, 爆炸与冲击, 2025
循环爆破作用下锁固型岩质边坡的累积损伤效应及稳定性分析
刘康琦 等, 爆炸与冲击, 2025
循环冲击荷载作用下单节理岩体的动态力学行为
刘康琦 等, 爆炸与冲击, 2025
考虑岩体破坏分区的岩石爆破爆炸荷载历程研究
孙鹏昌 等, 爆炸与冲击, 2024
地铁下穿上盖高层建筑振动响应预测与分析
谢艳花 等, 浙江工业大学学报, 2024
路基空洞对混凝土道路板时频振动特性影响模拟研究
史吏 等, 浙江工业大学学报, 2023
地铁浮置板轨道区段的车致环境振动特性分析
陈屹林 等, 计算机辅助工程, 2025
Immune mechanisms of toxicity from checkpoint inhibitors
Wang, S. Jennifer et al., TRENDS IN CANCER, 2023
Research on the spatiotemporal evolution of deformation and seismic dynamic response characteristics of high-steep loess slope on the northeast edge of the qinghai-tibet plateau
BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2025
氢气-甲烷-乙醇混合燃料的爆炸压力特性
郭宏展 等, 爆炸与冲击, 2023
Powered by
图(14) / 表(3)
计量
  • 文章访问数:  5554
  • HTML全文浏览量:  1935
  • PDF下载量:  54
  • 被引次数: 13
出版历程
  • 收稿日期:  2018-04-20
  • 修回日期:  2018-05-18
  • 网络出版日期:  2019-06-25
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回