Goaf collapse vibration analysis and disposal based on a experiment of heavy ball touchdown
-
摘要: 根据相似理论,以重球落地实验模拟采空区坍塌进而指导采空区治理为出发点,在振动波动特性分析的基础上,分别开展了质量为4 kg和10 kg的重球从1.0、1.5和2.0 m的高度落地的峰值振动速度测试实验;首次提出了累计振动速度衰减率和相对能量比概念;以普氏拱理论为基础,分析了采空区坍塌振动速度。研究表明:振动速度与重球质量和落地高度成正相关,且前者对累计衰减率的影响大于后者;随着测点距离的增大,振动速度整体表现为衰减趋势;重球质量为4 kg和10 kg时,在水平距离重球落地点3.0 m处的累计衰减率分别为79.79%~81.61%和79.95%~83.52%。不同介质交界面的反射和折射可引起振动速度的小幅度“跃增”。重球质量对振动能量衰减影响明显;质量越大,近区能量衰减越慢。采空区冒落体582.5~5 926.5 t,引起的振动速度远大于边坡安全允许值。采用“采空区顶板崩落+边坡削坡”方案进行治理后,边坡安全系数可达到1.26,消除采空区安全隐患。Abstract: Based on the similarity theory, the heavy ball landing experiments were conducted to simulate the collapse of the goaf in order to provide guidance for the goaf disposal. The particle peak vibration velocities corresponding to the balls with the mass 4 kg and 10 kg dropping from 1.0, 1.5 and 2.0 m respectively were measured experimentally on the basis of characteristics analysis of vibration wave. For the first time, the concepts of cumulative attenuation rate of vibration velocity and relative energy ratio were proposed. The collapse vibration velocity of the goaf was analyzed with the help of the Protodyakonov’s arch theory. The study shows that the mass and dropping height of the heavy ball are positively related to the vibration velocity, and the former has greater influence on the cumulative attenuation rate than that of the latter. With the increase of measuring distance, the overall vibration velocity shows an attenuation trend. The accumulative decay rates for 4 kg and 10 kg heavy balls at 3.0 m are 79.79%−81.61% and 79.95%−83.52%, respectively. Reflections and refractions at the interface of different media can cause a small " jump increase” in vibration velocity. The mass has a significant effect on vibration energy attenuation: the greater the mass, the slower the energy attenuation in the near area. The goaf collapsed mass is 582.5 t to 5 926.5 t and it causes the particle vibration velocity to be much larger than that of the safety allowable value. With the comprehensive treatment plan of " roof caving+slope slope cutting”, the slope safety factor can reach 1.26, completely eliminating the hidden dangers in the goaf area.
-
Key words:
- heavy ball touchdown experiment /
- vibration velocity /
- goaf disposal /
- numerical analysis
-
表 1 振动测量数据
Table 1. Vibration measurement data
重球质量/kg 测点距离/m 峰值振动速度/(cm·s−1) 第1次 第2次 平均值 第1次 第2次 平均值 第1次 第2次 平均值 高度 1.0 m 高度 1.5 m 高度 2.0 m 4 0.5 7.029 7.262 7.146 9.006 8.403 8.705 10.089 10.33 10.210 1.0 6.215 6.670 6.443 6.737 8.022 7.380 9.120 8.686 8.903 2.0 2.362 2.371 2.367 2.374 2.769 2.572 3.688 3.315 3.502 3.0 1.326 1.386 1.356 1.591 1.506 1.549 2.002 2.009 2.006 4.0 1.340 1.547 1.444 1.603 1.598 1.601 1.776 2.199 1.988 10 0.5 11.514 12.939 12.227 14.447 13.721 14.084 15.708 15.612 15.660 1.0 11.747 11.886 11.817 13.492 13.865 13.679 14.714 15.075 14.895 2.0 6.782 6.215 6.499 7.255 7.134 7.195 8.442 8.257 8.350 3.0 1.881 2.270 2.076 2.095 2.546 2.321 3.143 3.136 3.140 4.0 2.532 2.879 2.706 3.001 3.101 3.051 3.073 3.621 3.347 表 2 对于不同的落球条件在不同测点得到的累计振动速度衰减率
Table 2. Cumulative vibration attenuation rates at different measuring points for different falling ball conditions
重球质量/kg 测点距离/m 振动速度/(cm·s−1) 累计衰减率/% 振动速度/(cm·s−1) 累计衰减率/% 振动速度/(cm·s−1) 累计衰减率/% 高度 1.0 m 高度 1.5 m 高度 2.0 m 4 0.5 7.146 0 8.705 0 10.210 0 1.0 6.443 9.84 7.380 15.22 8.903 12.80 2.0 2.367 66.88 2.572 70.45 3.502 65.70 3.0 1.356 81.02 1.549 82.21 2.006 80.35 4.0 1.444 79.79 1.601 81.61 1.988 80.53 10 0.5 12.227 0 14.084 0 15.660 0 1.0 11.817 3.35 13.679 2.88 14.895 4.89 2.0 6.499 46.85 7.195 48.91 8.350 46.68 3.0 2.076 83.02 2.321 83.52 3.140 79.95 4.0 2.706 77.87 3.051 78.34 3.347 78.63 表 3 相对能量比
Table 3. Relative energy ratio
重球质量/kg 测点距离/m v2/(cm·s−1)2 k/% v2/(cm·s−1)2 k/% v2/(cm·s−1)2 k/% 高度 1.0 m 高度 1.5 m 高度 2.0 m 4 0.5 51.07 100 75.78 100 104.24 100 1.0 41.51 81.29 54.46 71.87 79.26 76.04 2.0 5.60 10.97 6.62 8.73 12.26 11.76 3.0 1.84 3.60 2.40 3.17 4.02 3.86 4.0 2.09 4.08 2.56 3.38 3.95 3.79 10 0.5 149.50 100 198.36 100 245.24 100 1.0 139.64 93.41 187.12 94.33 221.86 90.47 2.0 42.24 28.25 51.77 26.10 69.72 28.43 3.0 4.31 2.88 5.39 2.72 9.86 4.02 4.0 7.32 4.90 9.31 4.69 11.20 4.57 -
[1] 杜坤, 李夕兵, 刘科伟, 等. 采空区危险性评价的综合方法及工程应用 [J]. 中南大学学报(自然科学版), 2011, 42(9): 2802–2811.DU Kun, LI Xibing, LIU Kewei, et al. Comprehensive evaluation of underground goaf risk and engineering application [J]. Journal of Central South University (Science and Technology), 2011, 42(9): 2802–2811. [2] 徐恒, 王贻明, 吴爱祥, 等. 基于尖点突变理论的充填体下采空区安全顶板厚度计算模型 [J]. 岩石力学与工程学报, 2017, 36(3): 579–586. DOI: 10.13722/j.cnki.jrme.2016.0199.XU Heng, WANG Yiming, WU Aixiang, et al. A computational model of safe thickness of roof under filling body based on cusp catastrophe theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 579–586. DOI: 10.13722/j.cnki.jrme.2016.0199. [3] 吴爱祥, 王贻明, 胡国斌. 采空区顶板大面积冒落的空气冲击波 [J]. 中国矿业大学学报, 2007, 36(4): 473–477. DOI: 10.3321/j.issn:1000-1964.2007.04.011.WU Aixiang, WANG Yiming, HU Guobin. Air shock wave induced by roof falling in a large scale in ultra-huge mined-area [J]. Journal of China University of Mining and Technology, 2007, 36(4): 473–477. DOI: 10.3321/j.issn:1000-1964.2007.04.011. [4] 刘晓明, 罗周全, 杨承祥, 等. 基于实测的采空区稳定性数值模拟分析 [J]. 岩土力学, 2007, 28(S1): 521–526.LIU Xiaoming, LUO Zhouquan, YANG Chengxiang, et al. Analysis of stability of cavity based on cavity monitoring [J]. Rock and Soil Mechanics, 2007, 28(S1): 521–526. [5] 付建新, 杜建华, 谭玉叶. 缓倾斜厚大矿体崩落法开采隐伏空区顶板冒落过程及机理研究 [J]. 采矿与安全工程学报, 2017, 34(5): 891–898. DOI: 10.13545/j.cnki.jmse.2017.05.010.FU Jianxin, DU Jianhua, TAN Yuye. The falling process and mechanism of concealed gob roof during the caving mining of the gently inclined heavy ore [J]. Journal of Mining and Safety Engineering, 2017, 34(5): 891–898. DOI: 10.13545/j.cnki.jmse.2017.05.010. [6] 吴启红, 万世明, 彭文祥. 一种多层采空区群稳定性的综合评价法 [J]. 中南大学学报(自然科学版), 2012, 43(6): 2324–2330.WU Qihong, WAN Shiming, PENG Wenxiang. A comprehensive evaluation method about stability of polylaminate goafs [J]. Journal of Central South University (Science and Technology), 2012, 43(6): 2324–2330. [7] 王凯兴, 潘一山, 窦林名. 摆型波传播过程块系岩体能量传递规律研究 [J]. 岩土工程学报, 2016, 38(12): 2309–2314. DOI: 10.11779/CJGE201612021.WANG Kaixing, PANYishan, DOU Linming. Energy transfer in block-rock mass during propagation of pendulum-type waves [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2309–2314. DOI: 10.11779/CJGE201612021. [8] 楼晓明, 周文海, 简文彬, 等. 微差爆破振动波速度峰值-位移分布特征的延时控制 [J]. 爆炸与冲击, 2016, 36(6): 839–846. DOI: 10.11883/1001-1455(2016)06-0839-08.LOU Xiaoming, ZHOU Wenhai, JIAN Wenbin, et al. Control of delay time characterized by distribution of peak velocity-displacement vibration of millisecond blasting [J]. Explosion and Shock Waves, 2016, 36(6): 839–846. DOI: 10.11883/1001-1455(2016)06-0839-08. [9] 李俊如, 高建光, 邵蔚, 等. 砂土中的强夯振动对周边环境的影响研究 [J]. 岩土力学, 2002, 23: 198–200. DOI: 10.3969/j.issn.1000-7598.2002.z1.057.LI Junru, GAO Jianguang, SHAO Wei, et al. Research on influence of dynamic compaction vibration of sand-soil on surroundings [J]. Rock and Soil Mechanics, 2002, 23: 198–200. DOI: 10.3969/j.issn.1000-7598.2002.z1.057. [10] 杨年华, 张乐. 爆破振动波叠加数值预测方法 [J]. 爆炸与冲击, 2012, 32(1): 84–90. DOI: 10.3969/j.issn.1001-1455.2012.01.015.YANG Nianhua, ZHANG Le. Blasting vibration waveform prediction method based on superposition principle [J]. Explosion and Shock Waves, 2012, 32(1): 84–90. DOI: 10.3969/j.issn.1001-1455.2012.01.015. [11] KOLSKY H. Stress waves in solids [M]. New York: Dover Publications, 1963. [12] RAYLEIGH L. On waves propagated along the plane surface of an elastic solid [J]. Proceedings of the London Mathematical Society, 1885, 17: 4–11. DOI: 10.1112/plms/s1-17.1.4. [13] ZHANG Z X, NAARTTIJÄRVI T. Reducing ground vibrations caused by underground blasts in LKAB Malmberget mine [J]. International Journal for Blasting and Fragmentation, 2005, 9(2): 61–78. DOI: 10.1080/13855140500140275. [14] RICKETTS T E, GOLDSMITH W. Dynamic properties of rocks and composite structural materials [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1970, 7(3): 315–335. DOI: 10.1016/0148-9062(70)90045-8. [15] 王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 2005. [16] 杨风威, 李海波, 齐三红, 等. 平面应力波在岩质边坡中的传播规律研究 [J]. 岩石力学与工程学报, 2015, 34(S1): 2623–2631. DOI: 10.13722/j.cnki.jrme.2013.1374.YANG Fengwei, LI Haibo, QI Sanhong, et al. Study of regularity of plane stress wave transmitting in rock slope [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2623–2631. DOI: 10.13722/j.cnki.jrme.2013.1374. [17] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010-2010 [S]. 北京: 中国建筑工业出版社, 2015: 18−19. [18] 黄庆享, 郑超. 巷道支护的自稳平衡圈理论 [J]. 岩土力学, 2016, 37(5): 1231–1236. DOI: 10.16285/j.rsm.2016.05.003.HUANG Qingxiang, ZHENG Chao. Theory of self-stable ring in roadway support [J]. Rock and Soil Mechanics, 2016, 37(5): 1231–1236. DOI: 10.16285/j.rsm.2016.05.003. [19] 赵国彦, 周礼, 李金跃, 等. 房柱法矿柱合理尺寸设计及矿块结构参数优选 [J]. 中南大学学报(自然科学版), 2014, 45(11): 3943–3948.ZHAO Guoyan, ZHOU Li, LI Jinyue, et al. Reasonable pillar size design and nugget structural parameters optimization in room-and-pillar mining [J]. Journal of Central South University (Science and Technology), 2014, 45(11): 3943–3948. [20] 杨仙, 张可能, 黎永索, 等. 深埋顶管顶力理论计算与实测分析 [J]. 岩土力学, 2013, 34(3): 757–761. DOI: 10.16285/j.rsm.2013.03.027.YANG Xian, ZHANG Keneng, LI Yongsuo, et al. Theoretical and experimental analyses of jacking force during deep-buried pipe jacking [J]. Rock and Soil Mechanics, 2013, 34(3): 757–761. DOI: 10.16285/j.rsm.2013.03.027. [21] YI Haibao, LIU Weizhou, ZHANG Xiliang, et al. Study on deformation mechanism of high stress and broken roadway and its controlling measures [J]. Applied Mechanics and Materials, 2014, 501−504: 1798–1803. DOI: 10.4028/www.scientific.net/AMM.501-504. [22] 王洪江, 李公成, 吴爱祥, 等. 龙首矿围岩流变特性理论分析及现场监测 [J]. 岩石力学与工程学报, 2014, 33(S2): 3676–3681. DOI: 10.13722/j.cnki.jrme.2014.s2.035.WANG Hongjiang, LI Gongcheng, WU Aixiang, et al. Theoretical analysis for rheological characteristics of surrounding rock and on-site monitoring in Longshou mine [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3676–3681. DOI: 10.13722/j.cnki.jrme.2014.s2.035. [23] 中华人民共和国住房和城乡建设部. 非煤露天矿边坡工程技术规范: GB 51016-2014 [S]. 北京: 中国计划出版社, 2014: 6−7.