考虑自然对流的某固体火箭发动机慢速烤燃特性数值分析

叶青 余永刚

叶青, 余永刚. 考虑自然对流的某固体火箭发动机慢速烤燃特性数值分析[J]. 爆炸与冲击, 2019, 39(6): 062101. doi: 10.11883/bzycj-2018-0163
引用本文: 叶青, 余永刚. 考虑自然对流的某固体火箭发动机慢速烤燃特性数值分析[J]. 爆炸与冲击, 2019, 39(6): 062101. doi: 10.11883/bzycj-2018-0163
YE Qing, YU Yonggang. Numerical analysis of slow cook-off characteristics for solid rocket motor with natural convection[J]. Explosion And Shock Waves, 2019, 39(6): 062101. doi: 10.11883/bzycj-2018-0163
Citation: YE Qing, YU Yonggang. Numerical analysis of slow cook-off characteristics for solid rocket motor with natural convection[J]. Explosion And Shock Waves, 2019, 39(6): 062101. doi: 10.11883/bzycj-2018-0163

考虑自然对流的某固体火箭发动机慢速烤燃特性数值分析

doi: 10.11883/bzycj-2018-0163
详细信息
    作者简介:

    叶 青(1993- ),女,博士研究生,yqnjust@163.comt

    通讯作者:

    余永刚(1963- ),男,博士,教授,yygnjust801@163.com

  • 中图分类号: O389; TJ7

Numerical analysis of slow cook-off characteristics for solid rocket motor with natural convection

  • 摘要: 针对某高氯酸铵/端羟基聚丁二烯(AP/HTPB)推进剂固体火箭发动机,采用两步总包反应描述AP/HTPB的烤燃过程,建立了考虑发动机空腔自然对流的二维轴对称烤燃模型,对加热速率分别为3.6、7.2和10.8 K/h时火箭发动机的慢速烤燃行为进行了数值预测,研究了该火箭发动机的热安全性问题。结果表明,固体火箭发动机空腔内的自然对流对AP/HTPB推进剂的着火温度、着火延迟期和着火位置有一定影响,在热安全性精确分析中不可忽略。3种加热速率下,AP/HTPB推进剂的最初着火位置均出现在药柱肩部的环形区域内,3种加热速率对应的着火延迟期、着火温度及着火时壳体温度分别为30.71、20.06、18.68 h,526.52、528.10、530.64 K,和479.56、496.82、508.77 K。随着加热速率的增大,烤燃响应区域向推进剂与绝热层交界处移动,着火位置的二维截面由椭圆形变为半椭圆形。
  • 图  1  固体火箭发动机结构简图

    Figure  1.  Schematic drawing of solid rocket motor

    图  2  实验装置及试件结构示意图

    Figure  2.  Sketch map of experimental device and specimen structure

    图  3  实验装置着火时刻t=1350.5 min温度云图

    Figure  3.  Temperature distribution at the ignition time of the test device (t=1 350.5 min)

    图  4  推进剂中心温度随对烤燃装置加热时间的变化

    Figure  4.  The temperature in the center of the propellant varying with the heating time of the cook-off device

    图  5  固体火箭发动机尺寸及监测点位置

    Figure  5.  Sizes of the solid rocket motor and locations of monitoring points

    图  6  不同网格下点C处组分X的质量分数随时间变化的曲线

    Figure  6.  Variation of mass fraction of component X at point C in different grids with time

    图  7  不考虑自然对流不同时刻温度云图

    Figure  7.  Temperature distribution at different times without natural convection

    图  8  考虑自然对流不同时刻温度云图

    Figure  8.  Temperature distribution at different times with natural convection

    图  9  不同监测点的温度和监测点C处组分的质量分数的变化曲线

    Figure  9.  Temperature curves of different monitoring points and mass fraction curves of components at point C

    图  10  在7.2 K/h的加热速率下,着火时刻(t=79 409.5 s)的温度云图

    Figure  10.  Temperature distribution of propellant at ignition time (t=79 409.5 s) under the heating rate of 7.2 K/h

    图  11  在10.8 K/h的加热速率下,着火时刻(t=67 257.5 s)的温度云图

    Figure  11.  Temperature distribution of propellant at ignition time (t=67 257.5 s) under the heating rate of 10.8 K/h

    图  12  着火延迟期随升温速率的变化

    Figure  12.  Ignition delay vaying with heating rate

    表  1  AP/HTPB推进剂化学反应动力学参数[16]

    Table  1.   Chemical reaction kinetic parameters of AP/HTPB propellant[16]

    反应步A/s−1E/(kJ·mol−1)Q/(kJ·kg−1)
    1 800137.18−297
    21 100178.459 643.2
    下载: 导出CSV

    表  2  材料物性参数

    Table  2.   Parameters of materials

    材料ρ/(kg·m−3)cp/(J·kg−1·K−1)λ/(W·m−1·K−1)
    壳体8 030502.4816.27
    绝热层9502 8600.276
    环氧树脂挡板1 8001 2000.15
    AP/HTPB推进剂1 8261 2550.389
    下载: 导出CSV

    表  3  不同加热速率下的着火特征参数

    Table  3.   Ignition characteristic parameters at different heating rates

    加热速率/(K·h−1)着火延迟期/h着火温度/K壳体温度/K着火位置着火中心位置
    3.630.71526.52479.56(868~880 mm,143~150 mm)(874 mm,146 mm)
    7.222.06528.10496.82(875~887 mm,145~150 mm)(882 mm,148 mm)
    10.818.68530.64508.77(877~890 mm,146~150 mm)(884 mm,148.5 mm)
    下载: 导出CSV
  • [1] 冯晓军, 王晓峰. 装药孔隙率对炸药烤燃响应的影响 [J]. 爆炸与冲击, 2009, 29(1): 109–112. DOI: 10.11883/1001-1455(2009)01-0109-04.

    FENG Xiaojun, WANG Xiaofeng. Influences of charge porosity on cook-off response of explosive [J]. Explosion and Shock Waves, 2009, 29(1): 109–112. DOI: 10.11883/1001-1455(2009)01-0109-04.
    [2] 王洪伟, 智小琦, 刘学柱, 等. 限定条件下聚黑炸药烤燃试验及热起爆临界温度的数值计算 [J]. 火炸药学报, 2016, 39(1): 70–74. DOI: 10.14077/j.issn.1007-7812.2016.01.013.

    WANG Hongwei, ZHI Xiaoqi, LIU Xuezhu, et al. Cook-off experiment calculation on thermal ignition critical temperature of JH explosive under defined condition [J]. Chinese Journal of Explosive and Propellant, 2016, 39(1): 70–74. DOI: 10.14077/j.issn.1007-7812.2016.01.013.
    [3] 陈朗, 李贝贝, 马欣. DNAN炸药烤燃特征 [J]. 含能材料, 2016, 24(1): 27–32. DOI: 10.11943/j.issn.1006-9941.2016.01.004.

    CHEN Lang, LI Beibei, MA Xin. Research on the cook-off of DNAN explosive [J]. Journal of Energetic Materials, 2016, 24(1): 27–32. DOI: 10.11943/j.issn.1006-9941.2016.01.004.
    [4] 赵孝彬, 李军, 程立国, 等. 固体推进剂慢速烤燃特性的影响因素研究 [J]. 含能材料, 2011, 19(6): 669–672. DOI: 10.3969/j.issn.1006-9941.2011.06.016.

    ZHAO Xiaobin, LI Jun, CHENG Liguo, et al. Influence factors of slow cook-off characteristic for solid propellant [J]. Chinese Journal of Energetic Materials, 2011, 19(6): 669–672. DOI: 10.3969/j.issn.1006-9941.2011.06.016.
    [5] 陈朗, 马欣, 黄毅民, 等. 炸药多点测温烤燃实验和数值模拟 [J]. 兵工学报, 2011, 32(10): 1230–1236.

    CHEN Lang, MA Xin, HUANG Yimin, et al. Multi-point temperature measuring cook-off test and numerical simulation of explosive [J]. Acta Armamentarii, 2011, 32(10): 1230–1236.
    [6] 高峰, 智小琦, 刘学柱, 等. 物理界面对炸药慢速烤燃特性的影响 [J]. 火炸药学报, 2014, 7(6): 53–57. DOI: 10.14077/j.issn.1007-7812.2014.06.012.

    GAO Feng, ZHI Xiaoqi, LIU Xuezhu, et al. Effect of physical interface on slow cook-off characteristics of explosives [J]. Chinese Journal of Explosives and Propellants, 2014, 7(6): 53–57. DOI: 10.14077/j.issn.1007-7812.2014.06.012.
    [7] 牛余雷, 冯晓军, 郭昕, 等. GHL01炸药烤燃实验的尺寸效应与数值计算 [J]. 火炸药学报, 2014, 37(5): 37–41. DOI: 10.3969/j.issn.1007-7812.2014.05.008.

    NIU Yulei, FENG Xiaojun, GUO Xin, et al. Size effect and numerical simulation of cook-off test for GHL01 explosive [J]. Chinese Journal of Explosives and Propellants, 2014, 37(5): 37–41. DOI: 10.3969/j.issn.1007-7812.2014.05.008.
    [8] AYDEMIR E, ULAS A. A numerical study on the thermal initiation of a confined explosive in 2-D geometry [J]. Journal of Hazardous Materials, 2011, 186(1): 396. DOI: 10.1016/j.jhazmat.2010.11.015.
    [9] HO S Y. Thermo-mechanical properties of rocket propellants and correlation with cook-off behavior [J]. Propellants, Explosives, Pyrotechnics, 1995, 20(4): 206–214. DOI: 10.1002/(ISSN)1521-4087.
    [10] KOMAI I, SATO W. Reaction mechanisms in slow cook-off tests of GAP/AP propellants [C] // Insensitive Munitions and Energetic Materials Symposium (IMEMTS). Bristol: Fraunhofer Institute, 2006: 24−28.
    [11] 陈中娥, 唐承志, 赵孝彬. 固体推进剂的慢速烤燃行为与热分解特性的关系研究 [J]. 含能材料, 2006, 14(2): 155–157. DOI: 10.3969/j.issn.1006-9941.2006.02.024.

    CHEN Zhonge, TANG Chengzhi, ZHAO Xiaobin. Characteristics of HTPB/AP propellants in slow cook-off [J]. Chinese Journal of Energetic Materials, 2006, 14(2): 155–157. DOI: 10.3969/j.issn.1006-9941.2006.02.024.
    [12] 杨后文, 余永刚, 叶锐. AP/HTPB复合固体推进剂慢烤燃特性的数值模拟 [J]. 含能材料, 2015, 23(10): 924–929. DOI: 10.11943/j.issn.1006-9941.2015.10.002.

    YANG Houwen, YU Yonggang, YE Rui. Numerical simulation of cook-off characteristic for AP/HTPB composite solid propellant [J]. Chinese Journal of Energetic Materials, 2015, 23(10): 924–929. DOI: 10.11943/j.issn.1006-9941.2015.10.002.
    [13] YANG Houwen, YU Yonggang, YE Rui, et al. Cook-off test and numerical simulation of AP/HTPB composite solid propellant [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 1–9. DOI: 10.1016/j.jlp.2015.11.028.
    [14] LI Wenfeng, YU Yonggang, YE Rui. Effect of charge size on cook-off characteristics of AP/HTPB base bleed propellant [J]. Acta Armamentarii, 2017, 38(8): 1532–1540. DOI: 10.3969/j.issn.1000-1093.2017.08.010.
    [15] SRIDHARAN P, HAROLD H, JASPERLAL C, et al. Study on the effect of propellant entrapment in the loose flap region on solid rocket motor performance [C] // AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013. DOI: 10.2514/6.2013-4009.
    [16] KIM K H, KIM C K, YOO J C, et al. Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants [J]. Journal of Propulsion and Power, 2011, 27: 822–827. DOI: 10.2514/1.B34099.
    [17] GWAK M C, JUNG. T, YOH J J Friction-induced ignition modeling of energetic materials [J]. Journal of Mechanical Science and Technology, 2009, 23: 1779–1787. DOI: 10.1007/s12206-009-0603-1.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  5702
  • HTML全文浏览量:  1941
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-14
  • 修回日期:  2018-07-29
  • 网络出版日期:  2019-05-25
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回