Numerical analysis of slow cook-off characteristics for solid rocket motor with natural convection
-
摘要: 针对某高氯酸铵/端羟基聚丁二烯(AP/HTPB)推进剂固体火箭发动机,采用两步总包反应描述AP/HTPB的烤燃过程,建立了考虑发动机空腔自然对流的二维轴对称烤燃模型,对加热速率分别为3.6、7.2和10.8 K/h时火箭发动机的慢速烤燃行为进行了数值预测,研究了该火箭发动机的热安全性问题。结果表明,固体火箭发动机空腔内的自然对流对AP/HTPB推进剂的着火温度、着火延迟期和着火位置有一定影响,在热安全性精确分析中不可忽略。3种加热速率下,AP/HTPB推进剂的最初着火位置均出现在药柱肩部的环形区域内,3种加热速率对应的着火延迟期、着火温度及着火时壳体温度分别为30.71、20.06、18.68 h,526.52、528.10、530.64 K,和479.56、496.82、508.77 K。随着加热速率的增大,烤燃响应区域向推进剂与绝热层交界处移动,着火位置的二维截面由椭圆形变为半椭圆形。Abstract: A two-dimensional axisymmetric model about slow cook-off of solid rocket motor was established, where the process of slow cook-off for ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) propellant described by a two-step global chemical reaction kinetics, and natural convection of motor cavity was considered. The purpose of this paper is to study the thermal safety problems of solid rocket motor with ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) propellant. Numerical predictions of slow cook-off behavior for a motor were conducted at the heating rate s of 3.6, 7.2 and 10.8 K/h, respectively. The results show that the natural convection in the cavity of the solid rocket motor has a certain influence on the ignition temperature, ignition delay of the AP/HTPB propellant, and cannot be ignored in the accurate analysis of thermal safety. At the three heating rates, the initial ignition position of AP/HTPB propellants appeared in the annular region on the shoulder of the propellant. The ignition delay period, the ignition temperature and the temperature of the shell at the three heating rates were 30.71, 20.06, 18.68 h; 526.52, 528.10, 530.64 K; and 479.56, 496.82, 508.77 K; respectively. With the increase of heating rate, the response area of the cook-off is shifted to the junction between the propellant and the insulation, and the two-dimensional section of the ignition position is changed from ellipse to semi-ellipse.
-
Key words:
- slow cook-off /
- solid rocket motor /
- AP/HTPB /
- heating rate
-
反应步 A/s−1 E/(kJ·mol−1) Q/(kJ·kg−1) 1 800 137.18 −297 2 1 100 178.45 9 643.2 表 2 材料物性参数
Table 2. Parameters of materials
材料 ρ/(kg·m−3) cp/(J·kg−1·K−1) λ/(W·m−1·K−1) 壳体 8 030 502.48 16.27 绝热层 950 2 860 0.276 环氧树脂挡板 1 800 1 200 0.15 AP/HTPB推进剂 1 826 1 255 0.389 表 3 不同加热速率下的着火特征参数
Table 3. Ignition characteristic parameters at different heating rates
加热速率/(K·h−1) 着火延迟期/h 着火温度/K 壳体温度/K 着火位置 着火中心位置 3.6 30.71 526.52 479.56 (868~880 mm,143~150 mm) (874 mm,146 mm) 7.2 22.06 528.10 496.82 (875~887 mm,145~150 mm) (882 mm,148 mm) 10.8 18.68 530.64 508.77 (877~890 mm,146~150 mm) (884 mm,148.5 mm) -
[1] 冯晓军, 王晓峰. 装药孔隙率对炸药烤燃响应的影响 [J]. 爆炸与冲击, 2009, 29(1): 109–112. DOI: 10.11883/1001-1455(2009)01-0109-04.FENG Xiaojun, WANG Xiaofeng. Influences of charge porosity on cook-off response of explosive [J]. Explosion and Shock Waves, 2009, 29(1): 109–112. DOI: 10.11883/1001-1455(2009)01-0109-04. [2] 王洪伟, 智小琦, 刘学柱, 等. 限定条件下聚黑炸药烤燃试验及热起爆临界温度的数值计算 [J]. 火炸药学报, 2016, 39(1): 70–74. DOI: 10.14077/j.issn.1007-7812.2016.01.013.WANG Hongwei, ZHI Xiaoqi, LIU Xuezhu, et al. Cook-off experiment calculation on thermal ignition critical temperature of JH explosive under defined condition [J]. Chinese Journal of Explosive and Propellant, 2016, 39(1): 70–74. DOI: 10.14077/j.issn.1007-7812.2016.01.013. [3] 陈朗, 李贝贝, 马欣. DNAN炸药烤燃特征 [J]. 含能材料, 2016, 24(1): 27–32. DOI: 10.11943/j.issn.1006-9941.2016.01.004.CHEN Lang, LI Beibei, MA Xin. Research on the cook-off of DNAN explosive [J]. Journal of Energetic Materials, 2016, 24(1): 27–32. DOI: 10.11943/j.issn.1006-9941.2016.01.004. [4] 赵孝彬, 李军, 程立国, 等. 固体推进剂慢速烤燃特性的影响因素研究 [J]. 含能材料, 2011, 19(6): 669–672. DOI: 10.3969/j.issn.1006-9941.2011.06.016.ZHAO Xiaobin, LI Jun, CHENG Liguo, et al. Influence factors of slow cook-off characteristic for solid propellant [J]. Chinese Journal of Energetic Materials, 2011, 19(6): 669–672. DOI: 10.3969/j.issn.1006-9941.2011.06.016. [5] 陈朗, 马欣, 黄毅民, 等. 炸药多点测温烤燃实验和数值模拟 [J]. 兵工学报, 2011, 32(10): 1230–1236.CHEN Lang, MA Xin, HUANG Yimin, et al. Multi-point temperature measuring cook-off test and numerical simulation of explosive [J]. Acta Armamentarii, 2011, 32(10): 1230–1236. [6] 高峰, 智小琦, 刘学柱, 等. 物理界面对炸药慢速烤燃特性的影响 [J]. 火炸药学报, 2014, 7(6): 53–57. DOI: 10.14077/j.issn.1007-7812.2014.06.012.GAO Feng, ZHI Xiaoqi, LIU Xuezhu, et al. Effect of physical interface on slow cook-off characteristics of explosives [J]. Chinese Journal of Explosives and Propellants, 2014, 7(6): 53–57. DOI: 10.14077/j.issn.1007-7812.2014.06.012. [7] 牛余雷, 冯晓军, 郭昕, 等. GHL01炸药烤燃实验的尺寸效应与数值计算 [J]. 火炸药学报, 2014, 37(5): 37–41. DOI: 10.3969/j.issn.1007-7812.2014.05.008.NIU Yulei, FENG Xiaojun, GUO Xin, et al. Size effect and numerical simulation of cook-off test for GHL01 explosive [J]. Chinese Journal of Explosives and Propellants, 2014, 37(5): 37–41. DOI: 10.3969/j.issn.1007-7812.2014.05.008. [8] AYDEMIR E, ULAS A. A numerical study on the thermal initiation of a confined explosive in 2-D geometry [J]. Journal of Hazardous Materials, 2011, 186(1): 396. DOI: 10.1016/j.jhazmat.2010.11.015. [9] HO S Y. Thermo-mechanical properties of rocket propellants and correlation with cook-off behavior [J]. Propellants, Explosives, Pyrotechnics, 1995, 20(4): 206–214. DOI: 10.1002/(ISSN)1521-4087. [10] KOMAI I, SATO W. Reaction mechanisms in slow cook-off tests of GAP/AP propellants [C] // Insensitive Munitions and Energetic Materials Symposium (IMEMTS). Bristol: Fraunhofer Institute, 2006: 24−28. [11] 陈中娥, 唐承志, 赵孝彬. 固体推进剂的慢速烤燃行为与热分解特性的关系研究 [J]. 含能材料, 2006, 14(2): 155–157. DOI: 10.3969/j.issn.1006-9941.2006.02.024.CHEN Zhonge, TANG Chengzhi, ZHAO Xiaobin. Characteristics of HTPB/AP propellants in slow cook-off [J]. Chinese Journal of Energetic Materials, 2006, 14(2): 155–157. DOI: 10.3969/j.issn.1006-9941.2006.02.024. [12] 杨后文, 余永刚, 叶锐. AP/HTPB复合固体推进剂慢烤燃特性的数值模拟 [J]. 含能材料, 2015, 23(10): 924–929. DOI: 10.11943/j.issn.1006-9941.2015.10.002.YANG Houwen, YU Yonggang, YE Rui. Numerical simulation of cook-off characteristic for AP/HTPB composite solid propellant [J]. Chinese Journal of Energetic Materials, 2015, 23(10): 924–929. DOI: 10.11943/j.issn.1006-9941.2015.10.002. [13] YANG Houwen, YU Yonggang, YE Rui, et al. Cook-off test and numerical simulation of AP/HTPB composite solid propellant [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 1–9. DOI: 10.1016/j.jlp.2015.11.028. [14] LI Wenfeng, YU Yonggang, YE Rui. Effect of charge size on cook-off characteristics of AP/HTPB base bleed propellant [J]. Acta Armamentarii, 2017, 38(8): 1532–1540. DOI: 10.3969/j.issn.1000-1093.2017.08.010. [15] SRIDHARAN P, HAROLD H, JASPERLAL C, et al. Study on the effect of propellant entrapment in the loose flap region on solid rocket motor performance [C] // AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013. DOI: 10.2514/6.2013-4009. [16] KIM K H, KIM C K, YOO J C, et al. Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants [J]. Journal of Propulsion and Power, 2011, 27: 822–827. DOI: 10.2514/1.B34099. [17] GWAK M C, JUNG. T, YOH J J Friction-induced ignition modeling of energetic materials [J]. Journal of Mechanical Science and Technology, 2009, 23: 1779–1787. DOI: 10.1007/s12206-009-0603-1.