轮廓爆破孔壁压力峰值计算方法

陈明 刘涛 叶志伟 卢文波 严鹏

陈明, 刘涛, 叶志伟, 卢文波, 严鹏. 轮廓爆破孔壁压力峰值计算方法[J]. 爆炸与冲击, 2019, 39(6): 064202. doi: 10.11883/bzycj-2018-0171
引用本文: 陈明, 刘涛, 叶志伟, 卢文波, 严鹏. 轮廓爆破孔壁压力峰值计算方法[J]. 爆炸与冲击, 2019, 39(6): 064202. doi: 10.11883/bzycj-2018-0171
CHEN Ming, LIU Tao, YE Zhiwei, LU Wenbo, YAN Peng. Calculation methods for peak pressure on borehole wall of contour blasting[J]. Explosion And Shock Waves, 2019, 39(6): 064202. doi: 10.11883/bzycj-2018-0171
Citation: CHEN Ming, LIU Tao, YE Zhiwei, LU Wenbo, YAN Peng. Calculation methods for peak pressure on borehole wall of contour blasting[J]. Explosion And Shock Waves, 2019, 39(6): 064202. doi: 10.11883/bzycj-2018-0171

轮廓爆破孔壁压力峰值计算方法

doi: 10.11883/bzycj-2018-0171
基金项目: 国家自然科学基金(51479147,51779193)
详细信息
    作者简介:

    陈 明(1977- ),男,博士,教授,whuchm@whu.edu.cn

  • 中图分类号: O383

Calculation methods for peak pressure on borehole wall of contour blasting

  • 摘要: 爆破孔壁压力峰值是进行非流固耦合爆破动力响应分析的重要参数。针对轮廓爆破孔壁压力峰值的计算方法问题,理论分析了爆炸冲击波与弹性壁面的相互作用,推导了空气冲击波与弹性壁碰撞后压力增大倍数的理论解,并采用流固耦合动力有限元数值分析方法,研究了3种岩体介质、2种轮廓爆破常用炸药、5种常用不耦合系数、2种轴向装药系数工况下轮廓爆破的冲击波碰撞压力增大倍数和炮孔壁压力峰值。结果表明:轮廓爆破时,爆炸冲击波与孔壁碰撞后压力增大倍数并不是常值,与炸药特性、孔壁介质条件、不耦合装药系数等因素相关,孔壁压力峰值也与上述因素密切相关。基于模拟的孔壁压力峰值数据的统计分析,并结合理论推导成果及常用爆破孔壁压力峰值计算形式,提出了一种新的轮廓爆破孔壁压力峰值计算方法。
  • 图  1  冲击波反射和折射示意图

    Figure  1.  Schematic diagram for shock wave reflection and refraction

    图  2  不同入射压力下p3/p1与介质波阻抗的关系

    Figure  2.  Relationship between p3/p1 and wave impedance of transmission medium at different incident pressures

    图  3  计算模型示意图

    Figure  3.  Sketch of calculational model

    图  4  部分典型工况下冲击波与孔壁作用压力时程曲线

    Figure  4.  Pressure-time curves representing the interaction between shock wave and borehole wall under some typical working conditions

    图  5  乳化炸药作用下空气冲击波反射压力与入射压力比值

    Figure  5.  Ratio between reflected pressure and incident pressure of air blast wave induced by emulsion explosive

    图  6  乳化炸药作用下空气冲击波透射压力与入射压力比值

    Figure  6.  Ratio between transmission pressure and incident pressure of air blast wave induced by emulsion explosive

    图  7  压力增大倍数随不耦合系数的变化

    Figure  7.  Pressure increase multiple varying with decoupling coefficient

    表  1  岩石物理力学参数

    Table  1.   Physical and mechanical parameters of rock

    岩石种类密度/(kg·m−3)泊松比弹性模量/GPa屈服应力/MPa切线模量/GPa
    粉砂岩2 1700.25 6.7039.20 0.6
    石灰岩2 6000.2532.5 72.93.0
    花岗岩2 7000.2468.00150.007.0
     注:Cowper-Symonds 参数 C 取 2.5 s−1,Cowper-Symonds 参数 P 取 4.0。
    下载: 导出CSV

    表  2  炸药相关参数

    Table  2.   Parameters of explosive

    炸药种类密度/(kg·m−3)爆速/(m·s−1)A/GPaB/GPaR1R2ωE0/GPa
    乳化炸药[18]1 3004 000214.400.1824.200.900.154.192
    多孔粒状铵油炸药[19]1 1002 700191.210.1644.200.900.152.800
    下载: 导出CSV

    表  3  乳化炸药作用下空气冲击波反射压力与入射压力比值

    Table  3.   Ratio between reflected pressure and incident pressure of air blast wave induced by emulsion explosive

    装药条件不耦合系数p1/MPap2/MPap2/p1
    粉砂岩石灰岩花岗岩 粉砂岩石灰岩花岗岩
    25/421.6896.9313518610 3.2 5.3 6.3
    25/502.0052.3290398437 5.5 7.6 8.4
    32/762.3821.333444448815.720.822.9
    32/902.8113.533035435524.426.226.3
    32/1103.4412.926930430820.923.623.9
    下载: 导出CSV

    表  4  乳化炸药作用下空气冲击波透射压力与入射压力比值

    Table  4.   Ratio between transmission pressure and incident pressure of air blast wave induced by emulsion explosive

    装药条件不耦合系数p1/MPaP3/MPap3/p1
    粉砂岩石灰岩花岗岩 粉砂岩石灰岩花岗岩
    25/421.6896.9619761858 6.4 7.9 8.9
    25/502.0052.353467769510.212.913.3
    32/762.3821.346552850221.824.823.6
    32/902.8113.540042840229.631.729.8
    32/1103.4412.932430431025.123.624.0
    下载: 导出CSV

    表  5  模拟与理论计算孔壁压力峰值对比

    Table  5.   Comparison of borehole peak pressure between simulation and theoretical calculation

    炸药种类装药条件孔壁压力峰值/MPa
    数值模拟理论计算
    粉砂岩石灰岩花岗岩平均值 方法1(n=8)方法2
    乳化炸药25/42619761858746925792
    25/50534677695635802602
    32/76465528502498513439
    32/90400428402410331319
    32/110324304310313196232
    多孔粒状铵油炸药25/42521625671606835649
    25/50454542551516531493
    32/76379413389394339358
    32/90322329303318219258
    32/110248229233237130187
    下载: 导出CSV

    表  6  不同装药条件下的孔壁压力峰值

    Table  6.   Borehole peak pressure under different charge conditions

    炸药种类装药
    条件
    孔壁峰值压力的
    0.6 倍/MPa
    装药系数 0.6 时的
    平均压力/MPa
    孔壁峰值压力的
    0.3 倍/MPa
    装药系数 0.3 时的
    平均压力/MPa
    花岗岩石灰岩粉砂岩 花岗岩石灰岩粉砂岩 花岗岩石灰岩粉砂岩 花岗岩石灰岩粉砂岩
    乳化炸药25/42515457371527472386257228186286263225
    25/50417406320410411334208203160222223219
    32/76301317279287300277151158140171178165
    32/90241257240234244232121128120136142136
    32/110186182194175178180 93 91 97100102104
    多孔粒状
    铵油炸药
    25/42403375313388382318201188156214211180
    25/50331325272316315274165163136170172157
    32/76233248227216231218117124114126133127
    32/90182197193177183178 91 99 97102104103
    32/110140137149130131135 70 69 75 75 75 76
    下载: 导出CSV

    表  7  不同条件下的压力增大倍数

    Table  7.   Pressure increase multiples under different conditions

    装药条件不耦合系数n'
    乳化炸药多孔粒状铵油炸药
    25/421.68 4.7 5.8
    25/502.00 6.3 7.8
    32/762.38 7.8 9.3
    32/902.81 9.911.6
    32/1103.4413.214.6
    下载: 导出CSV
  • [1] 朱瑞赓, 王雪峰. 不耦合装药爆破孔壁压力计算: 一 [J]. 爆破, 1990, 7(3): 1–4.
    [2] 费鸿禄, 李守巨, 何庆志. 光面爆破装药不偶合系数的计算 [J]. 爆炸与冲击, 1992, 12(3): 270–274. DOI: 10.11883/1001-1455(1992)03-0270-05.

    FEI Honglu, LI Shouju, HE Qingzhi. Calculation of de-coupling coefficient of smooth blasting charge [J]. Explosion and Shock Waves, 1992, 12(3): 270–274. DOI: 10.11883/1001-1455(1992)03-0270-05.
    [3] 王志亮, 李永池. 工程爆破中径向水不耦合系数效应数值仿真 [J]. 岩土力学, 2005, 26(12): 1926–1930. DOI: 10.3969/j.issn.1000-7598.2005.12.012.

    WANG Zhiliang, LI Yongchi. Numerical simulation on effects of radial water-decopling coefficient in engineering blast [J]. Rock and Soil Mechanics, 2005, 26(12): 1926–1930. DOI: 10.3969/j.issn.1000-7598.2005.12.012.
    [4] 凌伟明. 岩石爆破炮孔孔壁压力的试验研究 [J]. 矿冶, 2004, 13(4): 13–16. DOI: 10.3969/j.issn.1005-7854.2004.04.004.

    LING Weiming. Experimental research on explosion pressure on the wall of a borehole in rock [J]. Mining and Metallurgy, 2004, 13(4): 13–16. DOI: 10.3969/j.issn.1005-7854.2004.04.004.
    [5] 王伟, 李小春, 石露, 等. 深层岩体松动爆破中不耦合装药效应的探讨 [J]. 岩土力学, 2008, 29(10): 2837–2842. DOI: 10.3969/j.issn.1000-7598.2008.10.046.

    WANG Wei, LI Xiaochun, SHI Lu, et al. Discussion on decoupled charge loosening blasting in deep rock mass [J]. Rock and Soil Mechanics, 2008, 29(10): 2837–2842. DOI: 10.3969/j.issn.1000-7598.2008.10.046.
    [6] 刘云川, 汪旭光, 刘连生, 等. 不耦合装药条件下炮孔初始压力计算的能量方法 [J]. 中国矿业, 2009, 18(6): 104–107. DOI: 10.3969/j.issn.1004-4051.2009.06.031.

    LIU Yunchuan, WANG Xuguang, LIU Liansheng, et al. An energy method for calculate borehole pressure under decoupled charging [J]. China Mining Magazine, 2009, 18(6): 104–107. DOI: 10.3969/j.issn.1004-4051.2009.06.031.
    [7] FELDGUN V R, KARINSKI Y S, YANKELEVSKY D Z. Experimental simulation of blast loading on structural elements using rarefaction waves-theoretical analysis [J]. International Journal of Impact Engineering, 2017, 102: 86–101. DOI: 10.1016/j.ijimpeng.2016.12.010.
    [8] SAHARAN M R, MITRI H S. Numerical procedure for dynamic simulation of discrete fractures due to blasting [J]. Rock Mechanics and Rock Engineering, 2008, 41(5): 641–670. DOI: 10.1007/s00603-007-0136-9.
    [9] OZGUR Yilmaz, TUGRUL Unlu. Three dimensional numerical rock damage analysis under blasting load [J]. Tunnelling and Underground Space Technology, 2013, 38: 266–278. DOI: 10.1016/j.tust.2013.07.007.
    [10] YI C, JOHANSSON D, GREBER J. Effects of in-situ stresses on the fracturing of rock by blasting [J]. Computers and Geotechnics, 2018, 104: 321–330. DOI: 10.1016/j.compgeo.2017.12.004.
    [11] HENRYCH J. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979.
    [12] 钮强. 岩石爆破机理 [M]. 沈阳: 东北工学院出版社, 1990: 18−19.
    [13] 王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 2005: 45−47.
    [14] 李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003: 204−210.
    [15] 戴俊. 岩石动力学特性与爆破理论 [M]. 北京: 冶金工业出版社, 2013: 88−91.
    [16] Livermore Software Technology Corporation. LS-DYNA theoretical manual [M]. California: Livermore Software Technology Corporation, 2003: 1012−1013.
    [17] 水利水电科学研究院. 岩石力学参数手册 [M]. 北京: 水利电力出版社, 1991: 429−434.
    [18] 夏祥, 李海波, 李俊如, 等. 岭澳核电站二期工程基岩爆破安全阈值分析 [J]. 岩土力学, 2008, 29(11): 2945–2951. DOI: 10.3969/j.issn.1000-7598.2008.11.010.

    XIA Xiang, LI Haibo, LI Junru, et al. Research on vibration safety threshold for rock under blasting excavation [J]. Rock and Soil Mechanics, 2008, 29(11): 2945–2951. DOI: 10.3969/j.issn.1000-7598.2008.11.010.
    [19] 刘军. 岩体在冲击载荷作用下的各向异性损伤模型及其应用 [J]. 岩石力学与工程学报, 2004, 23(4): 635–640. DOI: 10.3321/j.issn:1000-6915.2004.04.020.

    LIU Jun. Anisotropic damage model and its application to rock materials under impact load [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 635–640. DOI: 10.3321/j.issn:1000-6915.2004.04.020.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  7556
  • HTML全文浏览量:  2006
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-21
  • 修回日期:  2018-07-29
  • 网络出版日期:  2019-05-25
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回