Micro-mechanism of bending failure of sandstone under different loading rates
-
摘要: 岩石细观破裂形貌是岩石破坏机制的重要反映,为研究不同加载速率对砂岩弯曲破坏的影响,通过三点弯曲实验和扫描电镜方法,对某煤矿关键层砂岩弯曲破断裂纹细观形态以及裂纹的自相似性进行了研究。选取6个不同加载速率对岩样进行三点弯曲实验,观察其宏观断裂情况,并利用扫描电镜对弯曲断裂面表面裂纹细观结构进行观察,并拍摄不同倍数下的扫描电镜图片。对图片进行图像处理后得到砂岩弯曲断裂破坏细观裂纹信息,并计算得到微裂纹的分形盒维数值。结果显示:随着加载速率的提高,砂岩穿晶断裂的比例也随之升高,裂纹分形维数亦随着加载速率的增大而增加,同时,分形维数还与弯曲断裂破坏荷载和抗弯强度成正比。可见,加载速率对断裂方式有一定的影响,且加载速率越大断裂所需的破坏能越大,裂纹分布越广,表明开采速度与岩爆等岩体动力灾变有密切关系。Abstract: The micro morphology of rock rupture is an important reflection of rock failure mechanism, in order to study the effect of different loading rates on the bending failure of sandstone, the microscopic morphology of the bending breaking cracks and the self-similarity of the cracks are analysed by scanning electron microscope combined with three point bending test. Selecting six different loading rates to test the rock samples to observe the macroscopic fracture condition and then the microstructure of surface cracks on bend fracture surfaces is observed by scanning electron microscope, and take SEM pictures at different multiplier. After the image is processed, getting the micro crack information of bending fracture of sandstone, and the fractal box dimension value of the micro crack is calculated. The results show that the proportion of transgranular fracture increases with the increase of loading rate; the crack fractal dimension also increases with the increase of loading rate, and at the same time, the fractal dimension is proportional to the bending fracture load and bending strength. It can be seen that the loading rate has a certain effect on the fracture mode, and the greater the loading rate is, the greater the failure energy requires, and the wider the crack distribution is, indicating that mining speed is closely related to rock burst and other dynamic catastrophe of rock mass.
-
Key words:
- three point bending /
- loading rate /
- rock fracture /
- micromorphology /
- fractal dimension
-
表 1 岩石三点弯曲实验力学参数
Table 1. Mechanical parameters of rock three-point bending testing
加载速率/(N·s−1) 编号 破坏荷载/kN 抗弯强度/MPa 加载速率/(N·s−1) 编号 破坏荷载/kN 抗弯强度/MPa 0.1 A1 2.5 10 D1 2.86 A2 2.61 D2 2.51 A3 2.57 D3 2.94 平均 2.56 6.144 D4 3.00 0.4 B1 2.58 平均 2.93 7.032 B2 2.72 30 E1 3.34 B3 2.68 E2 3.25 平均 2.66 6.384 E3 3.47 1 C1 2.8 平均 3.35 8.040 C2 2.99 60 F1 3.64 C3 2.83 F2 3.48 C4 2.71 F3 3.63 平均 2.78 6.648 平均 3.56 8.544 表 2 砂岩试件裂纹分形维数
Table 2. Fractal dimension of cracks of sandstone
加载速率/(N·s−1) 拟合公式 分形维数 加载速率/(N·s−1) 拟合公式 分形维数 0.1 log2N=−1.670 1 log2a+2.696 6 1.670 1 10 log2N=−1.717 7 log2a+3.177 6 1.717 7 log2N=−1.665 3 log2a+3.002 6 1.665 3 log2N=−1.699 9 log2a+2.316 7 1.699 9 log2N=−1.699 2 log2a+2.737 6 1.699 2 log2N=−1.705 5 log2a+2.981 5 1.705 5 平均 1.678 2 平均 1.707 7 0.4 log2N=−1.671 6 log2a+3.257 5 1.671 6 30 log2N=−1.736 6 log2a+3.097 9 1.736 6 log2N=−1.683 5 log2a+2.798 7 1.683 5 log2N=−1.725 8 log2a+3.011 8 1.725 8 log2N=−1.692 7 log2a+3.127 6 1.692 7 log2N=−1.742 6 log2a+3.328 6 1. 742 6 平均 1.682 6 平均 1.735 1 log2N=−1.698 7 log2a+3.315 7 1.698 7 60 log2N=−1.762 9 log2a+2.923 0 1.762 9 log2N=−1.696 8 log2a+3.255 3 1.696 8 log2N=−1.749 8 log2a+3.257 4 1.749 8 log2N=−1.703 6 log2a+2.446 0 1. 703 6 log2N=−1.764 6 log2a+2.986 6 1.764 6 平均 1.699 7 平均 1.759 1 -
[1] 李德建, 关磊, 韩立强, 等. 白皎煤矿玄武岩岩爆破坏微观裂纹特征分析 [J]. 煤炭学报, 2014, 39(2): 307–313. DOI: 10.13225/j.cnki.jccs.2013.2013LI Dejian, GUAN Lei, HAN Liqiang, et al. Analysis of micro-crack characteristics from rockburst failure of basalt in Baijiao Coal Mine content [J]. Coal society, 2014, 39(2): 307–313. DOI: 10.13225/j.cnki.jccs.2013.2013 [2] 易顺民, 赵文谦, 蔡善武. 岩石脆性破裂断口的分形特征 [J]. 长春科技大学学报, 1999, 29(1): 37–40. DOI: 10.13278/j.cnki.jjuese.1999.01.008YI Shunmin, ZHAN Wenqian, CAI Shanwu. The fractal characteristics of brittle fracture appearance in rock [J]. Journal of Changchun University of Science and Technology, 1999, 29(1): 37–40. DOI: 10.13278/j.cnki.jjuese.1999.01.008 [3] 谢和平, 陈至达. 岩石断裂的微观机理分析 [J]. 煤炭学报, 1989, 6(2): 57–66. DOI: 10.13225/j.cnki.jccs.1989.02.009XIE Heping, CHEN Zhida. Analysis of rock fracture miro-mechanism [J]. Journal of coal society, 1989, 6(2): 57–66. DOI: 10.13225/j.cnki.jccs.1989.02.009 [4] DAUTRIAT J, BORNERT M, GLAND N. Micromechanical investigation of the hydromechanical behaviours of carbonates contribution of in-situ strain field measurement by means of SEM and optic digital image correlation [C] // Society of core analysts symposium. USA, 2013: 1−12. [5] 刘云鹏, 邓辉, 黄润秋. 板裂结构岩石力学试验及破裂断口细观形貌特征分析 [J]. 岩石力学与工程学报, 2015, 34(2): 3852–3861. DOI: 10.13722/j.cnki.jrme.2014.0993LIU Yunpeng, DENG Hui, HUANG Runqiu. Mechanical test of slab-rent structure rock and mesoscopic morphology analysis of rupture surface [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 3852–3861. DOI: 10.13722/j.cnki.jrme.2014.0993 [6] 李鹏, 饶秋华, 马雯波, 等. 脆性岩石热-水-力耦合断裂的断口分析 [J]. 岩石力学与工程学报, 2014, 33(6): 1179–1186. DOI: 10.13722/j.cnki.jrme.2014.06.011LI Peng, RAO Qiuhua, MA Wenbo, et al. Coupled thermos-hydro-mechanical fractographic analysis of brittle rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1179–1186. DOI: 10.13722/j.cnki.jrme.2014.06.011 [7] LI D, WANG G, HAN L, et al. Analysis of microscopic pore structures of rocks before and after water absorption [J]. Mining Science and Technology (China), 2011, 21(2): 287–293. DOI: 10.1016/j.mstc.2011.02.002. [8] CAI M, KAISER P K, TASAKA Y, el al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 833–847. DOI: 10.1016/j.ijrmms.2004.02.001. [9] 朱珍德, 张勇, 徐卫亚, 等. 高围压高水压条件下大理岩断口微观机理分析与试验研究 [J]. 岩石力学与工程学报, 2005, 24(1): 44–51. DOI: 10.3321/j.issn:1000-6915.2005.01.008ZHU Zhende, ZHANG Yong, XU Weiya, et al. Experimental studies and microcosmic mechanics analysis on marble rupture under high confining pressure and high hydraulic pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 44–51. DOI: 10.3321/j.issn:1000-6915.2005.01.008 [10] LI X, LOK T, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7. [11] 赵康, 赵红宇, 贾群燕. 岩爆岩石断裂的微观结构形貌分析与岩爆机理 [J]. 爆炸与冲击, 2015, 35(6): 913–916. DOI: 10.11883/1001-1455(2015)06-0913-0ZHAO Kang, ZHAO Hongyu, JIA Qunyan. An analysis of rockburst fracture micromorphology and study of its mechanism [J]. Explosion and Shock Wave, 2015, 35(6): 913–916. DOI: 10.11883/1001-1455(2015)06-0913-0 [12] 陈从新, 刘秀敏, 刘才华. 数字图像技术在岩石细观力学研究中的应用 [J]. 岩土力学, 2010, 31(S1): 53–60. DOI: 10.16285/j.rsm.2010.s1.044CHEN Congxin, LIU Xiumin, LIU Caihua. Application of digital image processing to rock mesomechanics [J]. Rock and Soil Mechanics, 2010, 31(S1): 53–60. DOI: 10.16285/j.rsm.2010.s1.044 [13] 梁昌玉, 吴树仁, 李晓. 中低应变率范围内单轴压缩下花岗岩断口细-微观特征研究 [J]. 岩石力学与工程学报, 2015, 34(S1): 2977–2986. DOI: 10.13722/j.cnki.jrme.2014.0701LIANG Changyu, WU Shuren, LI Xiao. Research on micro-meso characteristics of granite fracture under uniaxial compression at low and intermediate strain rates [J]. Rock Mechanics and Engineering, 2015, 34(S1): 2977–2986. DOI: 10.13722/j.cnki.jrme.2014.0701 [14] 彭瑞东, 鞠杨, 谢和平. 灰岩拉伸过程中细观结构演化的分形特征 [J]. 岩土力学, 2007, 28(12): 2579–2587. DOI: 10.3969/j.issn.1000-7598.2007.12.018PENG Ruidong, JU Yang, XIE Heping. Fractal characterization of meso-structural evolution during tension of limestone [J]. Rock and Soil Mechanics, 2007, 28(12): 2579–2587. DOI: 10.3969/j.issn.1000-7598.2007.12.018 [15] 黄冬梅, 常西坤, 林晓飞, 等. 单轴压缩下岩石断口裂纹的分形特征研究 [J]. 山东科技大学学报, 2014, 33(2): 58–62. DOI: 10.16452/j.cnki.sdkjzk.2014.02.013HUANG Dongmei, CHANG Xikun, LIN Xiaofei, et al. The fractal dimension of rock crack under uniaxial compression [J]. Journal of Shandong University of Science and Technology, 2014, 33(2): 58–62. DOI: 10.16452/j.cnki.sdkjzk.2014.02.013 [16] Mandelbort B B. How long is the coast of Britain: Statistical self-similarity and fractional dimension [J]. Science, 1967, 156(3775): 636–638. DOI: 10.1126/science.156.3775.636. [17] LIU Q, SUN W. A Hilbert-type fractal integral inequality and its applications [J]. Journal of Inequalities and Applications, 2017, 2017(1): 83. DOI: 10.1186/s13660-017-1360-9. [18] 姚哨峰, 张振南, 葛修润, 等. 大理岩断裂能与细观结构几何特征相关性 [J]. 岩土力学, 2016, 37(8): 2341–2346. DOI: 10.16285/j.rsm.2016.08.028YAO Shaofeng, ZHANG Zhennan, GE Xiurun, et al. Correlation between fracture energy and geometrical characteristic of mesostructure of marble [J]. Rock and Soil Mechanics, 2016, 37(8): 2341–2346. DOI: 10.16285/j.rsm.2016.08.028