平面激波加载下砂墙结构的冲击响应特性

王宏亮 田宙 浦锡锋 姚成宝 寿列枫

王宏亮, 田宙, 浦锡锋, 姚成宝, 寿列枫. 平面激波加载下砂墙结构的冲击响应特性[J]. 爆炸与冲击, 2019, 39(7): 072201. doi: 10.11883/bzycj-2018-0179
引用本文: 王宏亮, 田宙, 浦锡锋, 姚成宝, 寿列枫. 平面激波加载下砂墙结构的冲击响应特性[J]. 爆炸与冲击, 2019, 39(7): 072201. doi: 10.11883/bzycj-2018-0179
WANG Hongliang, TIAN Zhou, PU Xifeng, YAO Chengbao, SHOU liefeng. Dynamic responses of sand wall under planar shock loading[J]. Explosion And Shock Waves, 2019, 39(7): 072201. doi: 10.11883/bzycj-2018-0179
Citation: WANG Hongliang, TIAN Zhou, PU Xifeng, YAO Chengbao, SHOU liefeng. Dynamic responses of sand wall under planar shock loading[J]. Explosion And Shock Waves, 2019, 39(7): 072201. doi: 10.11883/bzycj-2018-0179

平面激波加载下砂墙结构的冲击响应特性

doi: 10.11883/bzycj-2018-0179
详细信息
    作者简介:

    王宏亮(1983- ),女,博士研究生,助理研究员,wanghl_2105@163.com

  • 中图分类号: O383

Dynamic responses of sand wall under planar shock loading

  • 摘要: 砂墙结构在爆炸安全防护领域具有广泛应用,为了研究激波加载下砂墙结构的冲击响应特性,基于水平激波管实验装置,开展平面激波冲击砂墙结构系列实验,采用高速纹影摄像系统捕捉流场中激波波系的演化过程和砂墙结构的运动过程。入射激波马赫数为1.827~2.413,相应入射激波载荷强度为0.378~0.724 MPa。砂墙结构利用铁砂、矾土、石英砂3种实验用砂制备,所制备砂墙结构孔隙度分别为56.6%、69.3%、56.6%。高速纹影照片显示:平面激波冲击砂墙结构发生反射和透射,伴随入射激波和透射激波的传播,在百微秒内,砂墙未产生显著运动,表现出显著的类固体动力学响应特性。基于冲击理论,确定了铁砂墙、矾土砂墙、石英砂墙的线性冲击关系,冲击关系中线性常数λ值量级为100,根据凝聚介质实用状态方程推断:较低强度载荷冲击作用下,砂墙主要产生体积变形,而由冲击引起的热能效应则可以忽略。
  • 图  1  水平激波管实验测试系统照片[9]

    Figure  1.  A photo of horizontal shock tube test system[9]

    图  2  水平激波管示意图[9]

    Figure  2.  Schematic diagram of horizontal shock tube[9]

    图  3  制备完成的砂墙结构及其装配完成照片[9]

    Figure  3.  Photos for the prepared sand structure and its assembly[9]

    图  4  工况1的流场瞬时高速纹影照片

    Figure  4.  High-speed schlieren photos of flow field at different times in the case 1

    图  5  工况2的流场瞬时高速纹影照片

    Figure  5.  High-speed schlieren photos of flow field at different times in the case 2

    图  6  工况3的流场瞬时高速纹影照片

    Figure  6.  High-speed schlieren photos of flow field at different times in the case 3

    图  7  工况4的流场瞬时高速纹影照片

    Figure  7.  High-speed schlieren photos of flow field at different times in the case 4

    图  8  工况5的流场瞬时高速纹影照片

    Figure  8.  High-speed schlieren photos of flow field at different times in the case 5

    图  9  工况6的流场瞬时高速纹影照片

    Figure  9.  High-speed schlieren photos of flow field at different times in the case 6

    图  10  砂墙冲击状态关系图

    Figure  10.  Diagram illustrating the determination of Hugoniot particle velocity and stress state of sand wall

    图  11  不同材料砂墙冲击状态关系对比

    Figure  11.  Comparison of D-u relations of different sand walls made with quartz, iron and bauxte particles

    表  1  砂墙结构参数

    Table  1.   Characteristic parameters of sand walls in seven experimental cases

    工况充气压力/MPa厚度/mm颗粒直径/μm孔隙度/%初始表观密度/(kg·m−3)材料
    122025056.63 060铁砂
    242025056.63 060铁砂
    3220 1069.31 196矾土
    4420 1069.31 196矾土
    553025056.61 146石英砂
    653025056.61 146石英砂
    742025056.61 146石英砂
    下载: 导出CSV

    表  2  所有工况中冲击波的传播速度

    Table  2.   Propagation velocities of shock waves in all cases

    工况入射激波马赫数入射激波速度/(m·s−1)透射激波速度/(m·s−1)反射激波速度/(m·s−1)
    11.827632767331
    22.402831993391
    32.000692767331
    42.413835858361
    52.402831948361
    62.503866993391
    72.402831933
    下载: 导出CSV

    表  3  砂墙冲击关系确定所涉及的过程状态数据

    Table  3.   Process state data for determining impact relation of sand wall

    工况入射激波波后流体
    速度/(m·s−1)
    入射激波波阵面
    压力/MPa
    入射激波波后流体
    密度/(kg·m−3)
    反射激波运动
    速度/(m·s−1)
    冲击界面运动
    速度/(m·s−1)
    砂墙冲击关系
    13690.3782.8463310.43D=513.7u+546.1
    25720.6653.8093830.87
    34330.4563.1603441.54D=87.6u+632.1
    45760.6523.8263692.58
    55720.6653.8093722.41D=209.7u+443.5
    66060.7243.9543822.62
    下载: 导出CSV

    表  4  干砂冲击状态关系文献发表实验结果

    Table  4.   Hugoniot relations of dry sand reported in other literatures

    序号应力/GPa初始粒径/μm初始密度/(kg·m−3)体积声速/(m·s−1)斜率 λ参考文献
    砂样条件冲击绝热线
    11~670~1401 4905041.6 Dianov, et al[14]
    20.5~3.0< 8501 380~1 4505601.69 Perry, et al[17]
    30.53~5.76 2301 430 ± 505301.64 Chapman, et al[15]
    40.3~1.8~2001 5702432.348Brown, et al[16]
    下载: 导出CSV
  • [1] SMITH P D. Blast walls for structural protection against high explosive treats: a review [J]. International Journal of Protective Structure, 2010, 1(1): 67–84. DOI: 10.1260/2041-4196.1.1.67.
    [2] 王等旺, 张德志, 李焰, 等. 沙墙吸能作用对爆炸冲击波影响的实验研究 [J]. 实验力学, 2011, 26(1): 37–42. DOI: 1001-4888(2011)01-0037-06.

    WANG Dengwang, ZHAND Dezhi, LI Yan, et al. Experimental study of sand wall energy absorption effect on blastwave [J]. Journal of Experimental Mechanics, 2011, 26(1): 37–42. DOI: 1001-4888(2011)01-0037-06.
    [3] ZHANG F, FROST DL, THIBAULT PA, et al. Explosive dispersal of solid particles [J]. Shock Waves, 2001, 10(6): 431–443. DOI: 10.1007/PL00004050.
    [4] WAGNER J L, BERESH S J, KEARNEY S P, et al. Interaction of a planar shock with a dense field of particles [C] // KONTIS K. 28th International Symposium on Shock Waves. Springer, Berlin, Heidelberg, 2012: 115−120. DOI: 10.1063/1.3686604.
    [5] WAGNER JL, BERESH SJ, KEARNEY SP, et al. A multiphase shock tube for shock wave interactions with dense particle fields [J]. Experiments in Fluids, 2012, 52(6): 1507–1517. DOI: 10.1007/s00348-012-1272-x.
    [6] EDWARD P D, WAGNER J L, DECHANT L J, et al. Measures of the initial transient of a dense particle curtain following shock wave impingement [C] // 55th AIAA Aerospace Sciences Meeting. Grapevine, Texas: American Institute of Aeronautics and Astronautics, 2017: 1466.
    [7] LING Y, WAGNER J L, BERESH S J, et al. Interaction of a planar shock wave with a dense particle curtain: modeling and experiments [J]. Physics of Fluids, 2012, 24(11): 113301. DOI: 10.1063/1.4768815.
    [8] ROGUE X, RODRIGUEZ G, HAAS J F, et al. Experimental and numerical investigation of the shock-induced fluidization of a particles bed [J]. Shock Waves, 1998, 8(1): 29–45. doi: 10.1007/s001930050096
    [9] LV Hua, WANG Zhongqi, LI Jianping. Experimental study of planar shock wave interactions with dense packed sand wall [J]. International Journal of Multiphase Flow, 2017, 89: 255–265. DOI: 10.1016/j.ijmultiphaseflow.2016.07.019.
    [10] THEOFANOUS T G, MITKIN V, CHANG C H. The dynamics of dense particle clouds subjected to shock waves: Part 1: experiments and scaling laws [J]. Journal of Fluid Mechanics, 2016, 792: 658–681. DOI: 10.1017/jfm.2016.97.
    [11] ZHANG Lite, SHI Honghui, WANG Chao, et al. Aerodynamic characteristics of solid particles’ acceleration by shock waves [J]. Shock Waves, 2011, 21: 243–252. DOI: 10.1007/s00193-011-0317-z.
    [12] KELLENBERGER M, JOHANSEN C, CICCARELLI G, et al. Dense particle cloud dispersion by a shock wave [J]. Shock Waves, 2013, 23(5): 415–430. DOI: 10.1007/s00193-013-0432-0.
    [13] OMIDVAR M, ISKANDER M, BLESS S. Stress-strain behavior of sand at high strain rates [J]. International Journal of Impact Engineering, 2012, 49: 192–213. DOI: 10.1016/j.ijimpeng.2012.03.004.
    [14] DIANOV M, ZLATIN N, MOCHALOV S, et al. Shock compressibility of dry and water-saturated sand [J]. Soviet Technical Physics Letters, 1976, 2: 207–208.
    [15] CHAPMAN D J, TSEMBELIS K, PROUD W G. The behaviour of water saturated sand under shock-loading [C] // Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and applied Mechanics. 2006, 2: 834−840.
    [16] BROWN J L, VOGLER T J, GRADY D E, et al. Dynamic compaction of sand [C] // AIP Conference Proceedings, 2007, 955(1): 1363−1366. DOI: 10.1063/1.2832977.
    [17] PERRY J I, BRAITHWAITE C H, TAYLOR N E, et al. Behaviour of moist and saturated sand during shock and release [J]. Applied Physics Letters, 2015, 107(17): 174102. doi: 10.1063/1.4934689
    [18] 李维新. 一维不定常流与冲击波 [M]. 2版. 北京: 国防工业出版社, 2004: 204−294.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  5434
  • HTML全文浏览量:  1858
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-25
  • 修回日期:  2018-07-23
  • 网络出版日期:  2019-06-25
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回