Dynamic responses of sand wall under planar shock loading
-
摘要: 砂墙结构在爆炸安全防护领域具有广泛应用,为了研究激波加载下砂墙结构的冲击响应特性,基于水平激波管实验装置,开展平面激波冲击砂墙结构系列实验,采用高速纹影摄像系统捕捉流场中激波波系的演化过程和砂墙结构的运动过程。入射激波马赫数为1.827~2.413,相应入射激波载荷强度为0.378~0.724 MPa。砂墙结构利用铁砂、矾土、石英砂3种实验用砂制备,所制备砂墙结构孔隙度分别为56.6%、69.3%、56.6%。高速纹影照片显示:平面激波冲击砂墙结构发生反射和透射,伴随入射激波和透射激波的传播,在百微秒内,砂墙未产生显著运动,表现出显著的类固体动力学响应特性。基于冲击理论,确定了铁砂墙、矾土砂墙、石英砂墙的线性冲击关系,冲击关系中线性常数λ值量级为100,根据凝聚介质实用状态方程推断:较低强度载荷冲击作用下,砂墙主要产生体积变形,而由冲击引起的热能效应则可以忽略。Abstract: In order to study the dynamic response behavior of a sand wall in the process of the shock-sand wall interaction, experiments are carried out in a horizontal shock tube. A high-speed schlieren imaging system is used to capture the instantaneous structures of shock wave and moving process of the sand wall in the flow field. The incident shock Mach number ranges from 1.827 to 2.413, and the incident shock strength ranges from 0.378 MPa to 0.724 MPa. Three different kinds of sand walls are constructed using well-size-distributed iron sand, bauxite sand and quartz sand, the corresponding porosities of these sand walls are 56.6%, 69.3% and 56.6%, respectively. High-speed schlieren photographs show that regular reflection occurs when the incident shock wave impacts the sand wall. Moreover, the sand wall does not move significantly until the hundreds of microseconds after the onset of the interaction, indicating that the dynamic response behavior of the sand wall is similar to that of a rigid body. Basing on the shock wave theory, the Hugoniot relations for sand walls made from three different materials are established. The bulk elastic moduli of iron-, bauxite- and quartz-sand walls are 0.913, 0.478, and 0.225 GPa, respectively. The constant λ in the Hugoniot relations is on the order of 100. It is concluded that the relatively low shock impacting majorly leads to the volume deformation of the sand wall, and the heat effect of the sand wall caused by shock loading may be unimportant.
-
Key words:
- planar shock wave /
- sand wall /
- dynamic response /
- high-speed schlieren
-
表 1 砂墙结构参数
Table 1. Characteristic parameters of sand walls in seven experimental cases
工况 充气压力/MPa 厚度/mm 颗粒直径/μm 孔隙度/% 初始表观密度/(kg·m−3) 材料 1 2 20 250 56.6 3 060 铁砂 2 4 20 250 56.6 3 060 铁砂 3 2 20 10 69.3 1 196 矾土 4 4 20 10 69.3 1 196 矾土 5 5 30 250 56.6 1 146 石英砂 6 5 30 250 56.6 1 146 石英砂 7 4 20 250 56.6 1 146 石英砂 表 2 所有工况中冲击波的传播速度
Table 2. Propagation velocities of shock waves in all cases
工况 入射激波马赫数 入射激波速度/(m·s−1) 透射激波速度/(m·s−1) 反射激波速度/(m·s−1) 1 1.827 632 767 331 2 2.402 831 993 391 3 2.000 692 767 331 4 2.413 835 858 361 5 2.402 831 948 361 6 2.503 866 993 391 7 2.402 831 933 表 3 砂墙冲击关系确定所涉及的过程状态数据
Table 3. Process state data for determining impact relation of sand wall
工况 入射激波波后流体
速度/(m·s−1)入射激波波阵面
压力/MPa入射激波波后流体
密度/(kg·m−3)反射激波运动
速度/(m·s−1)冲击界面运动
速度/(m·s−1)砂墙冲击关系 1 369 0.378 2.846 331 0.43 D=513.7u+546.1 2 572 0.665 3.809 383 0.87 3 433 0.456 3.160 344 1.54 D=87.6u+632.1 4 576 0.652 3.826 369 2.58 5 572 0.665 3.809 372 2.41 D=209.7u+443.5 6 606 0.724 3.954 382 2.62 表 4 干砂冲击状态关系文献发表实验结果
Table 4. Hugoniot relations of dry sand reported in other literatures
-
[1] SMITH P D. Blast walls for structural protection against high explosive treats: a review [J]. International Journal of Protective Structure, 2010, 1(1): 67–84. DOI: 10.1260/2041-4196.1.1.67. [2] 王等旺, 张德志, 李焰, 等. 沙墙吸能作用对爆炸冲击波影响的实验研究 [J]. 实验力学, 2011, 26(1): 37–42. DOI: 1001-4888(2011)01-0037-06.WANG Dengwang, ZHAND Dezhi, LI Yan, et al. Experimental study of sand wall energy absorption effect on blastwave [J]. Journal of Experimental Mechanics, 2011, 26(1): 37–42. DOI: 1001-4888(2011)01-0037-06. [3] ZHANG F, FROST DL, THIBAULT PA, et al. Explosive dispersal of solid particles [J]. Shock Waves, 2001, 10(6): 431–443. DOI: 10.1007/PL00004050. [4] WAGNER J L, BERESH S J, KEARNEY S P, et al. Interaction of a planar shock with a dense field of particles [C] // KONTIS K. 28th International Symposium on Shock Waves. Springer, Berlin, Heidelberg, 2012: 115−120. DOI: 10.1063/1.3686604. [5] WAGNER JL, BERESH SJ, KEARNEY SP, et al. A multiphase shock tube for shock wave interactions with dense particle fields [J]. Experiments in Fluids, 2012, 52(6): 1507–1517. DOI: 10.1007/s00348-012-1272-x. [6] EDWARD P D, WAGNER J L, DECHANT L J, et al. Measures of the initial transient of a dense particle curtain following shock wave impingement [C] // 55th AIAA Aerospace Sciences Meeting. Grapevine, Texas: American Institute of Aeronautics and Astronautics, 2017: 1466. [7] LING Y, WAGNER J L, BERESH S J, et al. Interaction of a planar shock wave with a dense particle curtain: modeling and experiments [J]. Physics of Fluids, 2012, 24(11): 113301. DOI: 10.1063/1.4768815. [8] ROGUE X, RODRIGUEZ G, HAAS J F, et al. Experimental and numerical investigation of the shock-induced fluidization of a particles bed [J]. Shock Waves, 1998, 8(1): 29–45. doi: 10.1007/s001930050096 [9] LV Hua, WANG Zhongqi, LI Jianping. Experimental study of planar shock wave interactions with dense packed sand wall [J]. International Journal of Multiphase Flow, 2017, 89: 255–265. DOI: 10.1016/j.ijmultiphaseflow.2016.07.019. [10] THEOFANOUS T G, MITKIN V, CHANG C H. The dynamics of dense particle clouds subjected to shock waves: Part 1: experiments and scaling laws [J]. Journal of Fluid Mechanics, 2016, 792: 658–681. DOI: 10.1017/jfm.2016.97. [11] ZHANG Lite, SHI Honghui, WANG Chao, et al. Aerodynamic characteristics of solid particles’ acceleration by shock waves [J]. Shock Waves, 2011, 21: 243–252. DOI: 10.1007/s00193-011-0317-z. [12] KELLENBERGER M, JOHANSEN C, CICCARELLI G, et al. Dense particle cloud dispersion by a shock wave [J]. Shock Waves, 2013, 23(5): 415–430. DOI: 10.1007/s00193-013-0432-0. [13] OMIDVAR M, ISKANDER M, BLESS S. Stress-strain behavior of sand at high strain rates [J]. International Journal of Impact Engineering, 2012, 49: 192–213. DOI: 10.1016/j.ijimpeng.2012.03.004. [14] DIANOV M, ZLATIN N, MOCHALOV S, et al. Shock compressibility of dry and water-saturated sand [J]. Soviet Technical Physics Letters, 1976, 2: 207–208. [15] CHAPMAN D J, TSEMBELIS K, PROUD W G. The behaviour of water saturated sand under shock-loading [C] // Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and applied Mechanics. 2006, 2: 834−840. [16] BROWN J L, VOGLER T J, GRADY D E, et al. Dynamic compaction of sand [C] // AIP Conference Proceedings, 2007, 955(1): 1363−1366. DOI: 10.1063/1.2832977. [17] PERRY J I, BRAITHWAITE C H, TAYLOR N E, et al. Behaviour of moist and saturated sand during shock and release [J]. Applied Physics Letters, 2015, 107(17): 174102. doi: 10.1063/1.4934689 [18] 李维新. 一维不定常流与冲击波 [M]. 2版. 北京: 国防工业出版社, 2004: 204−294.