起波配筋RC梁抗爆作用机理及抗力动力系数的理论计算方法

樊源 陈力 任辉启 冯鹏 方秦

樊源, 陈力, 任辉启, 冯鹏, 方秦. 起波配筋RC梁抗爆作用机理及抗力动力系数的理论计算方法[J]. 爆炸与冲击, 2019, 39(3): 035102. doi: 10.11883/bzycj-2018-0181
引用本文: 樊源, 陈力, 任辉启, 冯鹏, 方秦. 起波配筋RC梁抗爆作用机理及抗力动力系数的理论计算方法[J]. 爆炸与冲击, 2019, 39(3): 035102. doi: 10.11883/bzycj-2018-0181
FAN Yuan, CHEN Li, REN Huiqi, FENG Peng, FANG Qin. Blast-resistant mechanism of RC beam with kinked rebar and calculation method of dynamic resistance coefficient[J]. Explosion And Shock Waves, 2019, 39(3): 035102. doi: 10.11883/bzycj-2018-0181
Citation: FAN Yuan, CHEN Li, REN Huiqi, FENG Peng, FANG Qin. Blast-resistant mechanism of RC beam with kinked rebar and calculation method of dynamic resistance coefficient[J]. Explosion And Shock Waves, 2019, 39(3): 035102. doi: 10.11883/bzycj-2018-0181

起波配筋RC梁抗爆作用机理及抗力动力系数的理论计算方法

doi: 10.11883/bzycj-2018-0181
基金项目: 国家自然科学基金(51622812, 51427807);中国博士后科学基金(2017M613379)
详细信息
    作者简介:

    樊 源(1994- ),男,硕士研究生,fanyuan0@foxmail.com

    通讯作者:

    陈 力(1982- ),男,博士,教授,博导,chenli1360@qq.com

  • 中图分类号: O383.2

Blast-resistant mechanism of RC beam with kinked rebar and calculation method of dynamic resistance coefficient

  • 摘要:

    针对钢筋混凝土(RC)梁,提出了一种通过对抗拉纵筋进行局部弯折,形成钢筋起波,从而提高RC梁抗爆能力的高效新方法。结合已有的实验结果和有限元模型计算,分析了起波配筋RC梁的受荷破坏全过程,揭示了其抗爆作用机理。分析结果表明,在RC梁底部适当位置设置纵筋起波,能增大RC梁在爆炸荷载作用下的允许变形,有效吸收爆炸能量,大幅度提高RC梁的抗爆性能。基于能量法,建立了起波配筋RC梁在爆炸荷载作用下的理论计算模型,给出了抗力动力系数的显示计算公式;讨论了平屈抗力比、平弹变形比以及屈弹变形比3个关键设计参数对起波配筋RC梁抗爆性能的影响规律,以便为进一步工程应用提供理论依据。

  • 图  1  普通平直钢筋和起波钢筋

    Figure  1.  Kinked rebar compared with traditional rebar

    图  2  配起波纵筋RC梁的荷载-挠度曲线

    Figure  2.  Load-deflection curve of the RC beam with local kinked rebar

    图  3  起波钢筋准静态拉伸实验

    Figure  3.  Stretching test of the kinked rebar specimen

    图  4  起波钢筋等效应力应变关系

    Figure  4.  Equivalent stress- strain curves

    图  5  起波配筋梁的受力及破坏过程示意图

    Figure  5.  Failure process of the RC beam with local kinked rebar

    图  6  起波配筋梁简化抗力曲线

    Figure  6.  Theoretical load-deflection curve of the RC beam with local kinked rebar

    图  7  起波配筋梁模型及有限元计算结果

    Figure  7.  Model of RC beam with local kinked rebars and FEM results

    图  8  RC梁有限元计算模型(单位: mm)

    Figure  8.  FE model of RC beam (unit: mm)

    图  9  等效塑性应变云图

    Figure  9.  Equivalent plastic strain

    图  10  跨中钢筋应变与跨中挠度的关系

    Figure  10.  Relation between mid-span deflection and steel strain

    图  11  总吸能与跨中钢筋应变的关系

    Figure  11.  Total absorbed energy vs. steel strain

    图  12  理想弹塑性等效单自由度体系

    Figure  12.  Elastic-perfectly plastic SDOF system

    图  13  突加平台形荷载

    Figure  13.  Platform load

    图  14  瞬息冲量荷载

    Figure  14.  Instantaneous load

    图  15  三角形衰减荷载

    Figure  15.  Triangular declining load

    图  16  爆炸荷载作用下起波配筋梁动态响应

    Figure  16.  Dynamic response for RC beams with local kinked rebar under the blast load

    图  17  刚度比κe,p的拟合结果

    Figure  17.  Fitting results of κe,p

    图  18  平台形荷载作用下起波配筋RC梁的抗力动力系数

    Figure  18.  Dynamic resistance coefficent of RC beams with kinked rebars under platform load

    图  19  瞬息冲量荷载作用下起波配筋RC梁的抗力动力系数

    Figure  19.  Dynamic resistance coefficent of RC beams with kinked rebars under instantaneous load

    表  1  起波配筋RC梁参数

    Table  1.   Parameters of the RC beam with local kinked rebar

    混凝土强度/MPa纵筋屈服强度/MPa纵筋极限强度/MPa箍筋屈服强度/MPa箍筋极限强度/MPa跨长/m梁宽/m梁高/m
    43.4441.1686.2338.1470.12.70.20.3
    下载: 导出CSV

    表  2  $ {\bar K_{1,2}}$Ψ1,eΨ2,eκe,p的主要影响因素

    Table  2.   Major factors of ${\bar K_{1,2}}$, Ψ1,e, Ψ2,e, κe,p

    参数主要影响因素
    $\scriptstyle {\bar K_{1,2}}$钢筋在RC梁中的起波位置
    Ψ1,e钢筋的起波矢高、起波角度
    Ψ2,e钢筋的伸长率,RC梁的配筋率
    κe,p钢筋的强度、起波角度、起波矢高,RC梁的截面高度
    下载: 导出CSV

    表  3  算例参数范围

    Table  3.   Parameter scope for theoretical analysis

    参数$\scriptstyle{\bar K_{1,2}}$Ψ1,eΨ2,e
    范围0, 0.5, 0.9[0,7][0,10]
    下载: 导出CSV
  • [1] ALHOZAIMY A M, SOROUSHIAN P, MIRZA F. Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials [J]. Cement & Concrete Composites, 1996, 18(2): 85–92. doi: 10.1016/0958-9465(95)00003-8
    [2] 严少华, 李志成, 王明洋, 等. 高强钢纤维混凝土冲击压缩特性试验研究 [J]. 爆炸与冲击, 2002, 22(3): 237–241. doi: 10.3321/j.issn:1001-1455.2002.03.008

    YAN Shaohua, LI Zhicheng, WANG Mingyang, et al. Dynamic compressive behavior of high-strength steel fiber reinforced concrete [J]. Explosion and Shock Waves, 2002, 22(3): 237–241. doi: 10.3321/j.issn:1001-1455.2002.03.008
    [3] 周乐, 王晓初, 刘洪涛. 碳纤维混凝土力学性能与破坏形态试验研究 [J]. 工程力学, 2013, 30(增刊): 226–231. doi: 10.6052/j.issn.1000-4750.2012.04.S066

    ZHOU Le, WANG Xiaochu, LIU Hongtao. Experimental study of mechanical behavior and failure mode of carbon fiber reinforced concrete [J]. Engineering Mechanics, 2013, 30(Suppl): 226–231. doi: 10.6052/j.issn.1000-4750.2012.04.S066
    [4] 许静, 朱涵, 刘春生, 等. 橡胶集料混凝土阻尼比的初步试验研究 [J]. 混凝土, 2005(11): 40–42. doi: 10.3969/j.issn.1002-3550.2005.11.011

    XU Jing, ZHU Han, LIU Chunsheng, et al. Preliminary experimental studies on damping ratio of crumb rubber concrete [J]. Concrete, 2005(11): 40–42. doi: 10.3969/j.issn.1002-3550.2005.11.011
    [5] 万泽青, 刘平, 施伟. 高阻尼混凝土的试验研究及阻尼机理探讨 [J]. 混凝土, 2007(7): 37–40. doi: 10.3969/j.issn.1002-3550.2007.07.013

    WAN Zeqing, LIU Ping, SHI Wei. Experimental research and damping mechanism analyses of high damping concrete [J]. Concrete, 2007(7): 37–40. doi: 10.3969/j.issn.1002-3550.2007.07.013
    [6] 张宝超, 潘景龙. FRP约束混凝土快速荷载下应力应变关系初探 [J]. 爆炸与冲击, 2003, 23(5): 466–471. doi: 10.3321/j.issn:1001-1455.2003.05.014

    ZHANG Baochao, PAN Jinglong. Stress-strain relation of FRP confined concrete subjected to fast load [J]. Explosion and Shock Waves, 2003, 23(5): 466–471. doi: 10.3321/j.issn:1001-1455.2003.05.014
    [7] TENG J G, CHEN J F, SMITH S T, et al. FRP: strengthened RC structures [J]. Frontiers in Physics, 2002: 266.
    [8] WU C, OEHLERS D J, REBENTROST M, et al. Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs [J]. Engineering Structures, 2009, 31(9): 2060–2069. doi: 10.1016/j.engstruct.2009.03.020
    [9] 李砚召, 王肖钧, 张新乐, 等. 预应力混凝土结构抗爆性能试验研究 [J]. 实验力学, 2005, 20(2): 179–185. doi: 10.3969/j.issn.1001-4888.2005.02.004

    LI Yanzhao, WANG Xiaojun, ZHANG Xinle, et al. Test study on anti-detonation quality of pre-stressed concrete structure [J]. Journal of Experimental Mechanics, 2005, 20(2): 179–185. doi: 10.3969/j.issn.1001-4888.2005.02.004
    [10] CHEN L, FANG Q, LIU J C, et al. Nonlinear analysis of blast performance of partially prestressed RC beams [J]. International Journal of Protective Structures, 2011, 2(3): 295–314. doi: 10.1260/2041-4196.2.3.295
    [11] 胡时胜, 刘剑飞, 王梧. 硬质聚氨酯泡沫塑料本构关系的研究[C]//第五次全国爆轰与冲击动力学学术会议, 1997: 151−156. DOI: 10.3321/j.issn:0459-1879.1998.02.004.

    HU Shisheng, LIU Jianfei, WANG Wu. Study of the constitutive relationship of rigid polyurethane foam [C]//the 5th National Symposium on Shock & Impact Dynamics,1997: 151−156. DOI: 10.3321/j.issn:0459-1879.1998.02.004.
    [12] SANTOSA S, WIERZBICKI T. Crash behavior of box columns filled with aluminum honeycomb or foam [J]. Computers & Structures, 1998, 68(4): 343–367. doi: 10.1016/S0045-7949(98)00067-4
    [13] ZHU F, ZHAO L, LU G, et al. Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations [J]. International Journal of Impact Engineering, 2008, 35(8): 937–951.
    [14] 方秦, 陈力, 杜茂林. 端部设置弹簧和阻尼器提高防护门抗力的理论与数值分析 [J]. 工程力学, 2008, 25(3): 194–199.

    FANG Qin, CHEN Li, DU Maolin. Theoretical and numerical investigations in effects of end-supported springs and dampers on increasing resistance of blast doors [J]. Engineering Mechanics, 2008, 25(3): 194–199.
    [15] 王宝柱, 黄微波, 杨宇润, 等. 喷涂聚脲弹性体技术的应用 [J]. 聚氨酯工业, 2000(1): 39–44.

    WANG Baozhu, HUANG Weibo, YANG Yuyun, et al. Application of spray polyurea elastomer [J]. Polyurethane Industry, 2000(1): 39–44.
    [16] 宋彬, 黄正祥, 翟文, 等. 聚脲弹性体夹芯防爆罐抗爆性能研究 [J]. 振动与冲击, 2016, 35(7): 138–144.

    SONG Bin, HUANG Zhengxiang, ZHAI Wen, et al. Anti-detonation properties of explosion-proof pots made of sandwich structures with polyurea elastomer [J]. Journal of Vibration and Shock, 2016, 35(7): 138–144.
    [17] 国家人民防空办公室. 人民防空地下室设计规范: GB 50038-2005 [S]. 中华人民共和国建设部, 2005.

    National People's Air Defense Office. Code for design of civil air defense basement: GB 50038-2005 [S]. Ministry of Construction of the People's Republic of China, 2005.
    [18] 方秦, 柳锦春. 地下防护结构[M]. 中国水利水电出版社, 2010.

    FANG Qin, LIU Jinchun. Underground protective structure [M]. China Water & Power Press, 2010.
    [19] FENG Peng, QIANG Hanlin, QIN Weihong, et al. A novel kinked rebar configuration for simultaneously improving the seismic performance and progressive collapse resistance of RC frame structures [J]. Engineering Structures, 2017, 147(15): 752–767. doi: 10.1016/j.engstruct.2017.06.042
    [20] 高蒙. 配置局部起波钢筋的混凝土梁受力性能试验研究[D]. 东南大学, 2016.

    GAO Meng. Experimental study on mechanical behavior of concrete beams reinforced with V-shaped rebar [D]. Southeast University, 2016.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  97
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-28
  • 修回日期:  2018-07-26
  • 网络出版日期:  2018-07-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回