变截面爆炸成型弹丸垂直侵彻装甲钢板靶后破片质量模型

邢柏阳 刘荣忠 张东江 陈亮 侯云辉 郭锐

邢柏阳, 刘荣忠, 张东江, 陈亮, 侯云辉, 郭锐. 变截面爆炸成型弹丸垂直侵彻装甲钢板靶后破片质量模型[J]. 爆炸与冲击, 2019, 39(7): 074202. doi: 10.11883/bzycj-2018-0187
引用本文: 邢柏阳, 刘荣忠, 张东江, 陈亮, 侯云辉, 郭锐. 变截面爆炸成型弹丸垂直侵彻装甲钢板靶后破片质量模型[J]. 爆炸与冲击, 2019, 39(7): 074202. doi: 10.11883/bzycj-2018-0187
XING Boyang, LIU Rongzhong, ZHANG Dongjiang, CHEN Liang, HOU Yunhui, GUO Rui. A mass model for behind-armor debris generated by normal penetration of a variable cross-section explosively-formed projectile into an armor steel plate[J]. Explosion And Shock Waves, 2019, 39(7): 074202. doi: 10.11883/bzycj-2018-0187
Citation: XING Boyang, LIU Rongzhong, ZHANG Dongjiang, CHEN Liang, HOU Yunhui, GUO Rui. A mass model for behind-armor debris generated by normal penetration of a variable cross-section explosively-formed projectile into an armor steel plate[J]. Explosion And Shock Waves, 2019, 39(7): 074202. doi: 10.11883/bzycj-2018-0187

变截面爆炸成型弹丸垂直侵彻装甲钢板靶后破片质量模型

doi: 10.11883/bzycj-2018-0187
基金项目: 国家自然科学基金(11372136);中央高校基本科研业务费专项基金(30916011306)
详细信息
    作者简介:

    邢柏阳(1992- ),男,博士研究生,xing_boyang@163.com

    通讯作者:

    郭 锐(1980- ),男,博士,副教授,guorui@njust.edu.cn

  • 中图分类号: O385; TJ012.4; TJ413.+2

A mass model for behind-armor debris generated by normal penetration of a variable cross-section explosively-formed projectile into an armor steel plate

  • 摘要: 考虑爆炸成型弹丸(explosively-formed projectile,EFP)变截面的特性,基于流体力学Bernoulli方程和绝热剪切理论,改进了EFP垂直侵彻装甲钢板靶后破片质量模型,结合已有的试验数据和数值仿真方法检验了改进后模型的准确性。在此基础上,分析了靶板厚度和EFP着靶速度对靶板和EFP产生的靶后破片质量的影响规律。结果表明:相比于改进前的模型,改进后的模型能够更准确地解释靶板和EFP产生的靶后破片质量随靶板厚度和EFP着靶速度的变化规律;当EFP着靶速度为1 650 m/s时,随着靶板厚度从30 mm增大到70 mm,EFP变截面的特性对靶板和EFP产生靶后破片质量的影响不断增强;当靶板厚度为40 mm时,随着EFP着靶速度从1 650 m/s升高到1 860 m/s,EFP变截面的特性对靶板和EFP产生靶后破片质量的影响不断减弱。
  • 图  1  某典型爆炸成型弹丸的形状

    Figure  1.  The shape of a certain typical explosively-formed projectile

    图  2  爆炸成型弹丸(EFP)垂直侵彻靶板的过程

    Figure  2.  The process of an explosively-formed projectile (EFP) normally penetrating into a target

    图  3  冲塞体形成时刻

    Figure  3.  Forming time of a plug

    图  4  侵彻孔半径随时间变化关系

    Figure  4.  The time history of the crater radius

    图  5  依据文献[18-19]构建的EFP模型

    Figure  5.  The EFP model developed according to references [18-19]

    图  6  依据文献[18-19]构建的仿真模型

    Figure  6.  The simulation model developed by according to references [18-19]

    图  7  本文仿真所得的靶后破片云与文献[18]的对比

    Figure  7.  Behind-armor debris clouds obtained by this paper compared with that in reference [18]

    图  8  某典型EFP垂直侵彻靶板的出孔形状(单位:mm)

    Figure  8.  The exit hole shape of a target normally penetrated by a certain typical EFP (unit in mm)

    图  9  不同靶板厚度条件下的靶后破片质量

    Figure  9.  Mass of behind-armor debris for different thicknesses of targets

    图  10  不同EFP着靶速度条件下的靶后破片质量

    Figure  10.  Mass of behind-armor debris for different impact velocities of EFPs

    表  1  不同靶板厚度条件下靶后破片质量的偏差

    Table  1.   Mass deviations of behind-armor debris for different thicknesses of targets

    H0/mmεt,bjm/%εt,djm/%εp,bjm/% εp,djm/%
    304.113.53.532.0
    401.812.32.940.3
    500.825.94.145.4
    607.455.47.454.8
    706.070.110.464.3
    下载: 导出CSV

    表  2  不同EFP着靶速度条件下靶后破片质量的偏差

    Table  2.   Mass deviations of behind-armor debris for different impact velocities of EFPs

    v0/(m·s−1εt,bjm/%εt,djm/%εp,bjm/%εp,djm/%
    1 6501.812.32.940.3
    1 6803.911.22.438.6
    1 7404.99.61.237.1
    1 8002.75.01.236.1
    1 8602.22.30.434.1
    下载: 导出CSV
  • [1] KIM H S, ARNOLD W, HARTMANN T, et al. A model for behind armor debris from EFP impact [C] // BAKER E, TEMPLETON D. 26th International Symposium on Ballistics. USA: DEStech Publications Inc., 2011.
    [2] YOSSIFON G, YARIN A L. Behind-the-armor debris analysis [J]. International Journal of Impact Engineering, 2002, 27(8): 807–835. DOI: 10.1016/S0734-743X(02)00009-X.
    [3] ALEKSEEVSKⅡ V P. Penetration of a rod into a target at high velocity [J]. Combustion, Explosion and Shock waves, 1966, 2(2): 63–66. DOI: 10.1007/BF00749237.
    [4] TATE A. A theory for the deceleration of long rods after impact [J]. Journal of the Mechanics and Physics of Solids, 1967, 15(6): 387–399. DOI: 10.1016/0022-5096(67)90010-5.
    [5] TATE A. Further results in the theory of long rod penetration [J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 141–150. DOI: 10.1016/0022-5096(69)90028-3.
    [6] TATE A. Long rod penetration models: Part I: a flow field model for high speed long rod penetration [J]. International Journal of Mechanical Sciences, 1986, 28(8): 535–548. DOI: 10.1016/0020-7403(86)90051-2.
    [7] TATE A. Long rod penetration models: Part Ⅱ: extensions to the hydrodynamic theory of penetration [J]. International Journal of Mechanical Sciences, 1986, 28(9): 599–612. DOI: 10.1016/0020-7403(86)90075-5.
    [8] 孙庚辰, 吴锦云, 赵国志, 等. 长杆弹垂直侵彻半无限厚靶板的简化模型 [J]. 兵工学报, 1981(4): 1–8.

    SUN Gengchen, WU Jinyun, ZHAO Guozhi, et al. A simplified model of the penetration of the long-rod penetrator against the plates with semi-infinite thickness at normal angle [J]. Acta Armamentarii, 1981(4): 1–8.
    [9] ROSENBERG Z, MARMOR E, MAYSELESS M. On the hydrodynamic theory of long-rod penetration [J]. International Journal of Impact Engineering, 1990, 10(1/2/34): 483–486. DOI: 10.1016/0734-743X(90)90081-6.
    [10] WALKER J D, ANDERSON Jr C E. A time-dependent model for long-rod penetration [J]. International Journal of Impact Engineering, 1995, 16(1): 19–48. DOI: 10.1016/0734-743X(94)00032-R.
    [11] ZHANG Liansheng, HUANG Fenglei. Model for long-rod penetration into semi-infinite targets [J]. Journal of Beijing Institute of Technology (English Edition), 2004, 13(3): 285–289. DOI: 10.15918/j.jbit1004-0579.2004.03.011.
    [12] LAN Bin, WEN Heming. Alekseevskii-Tate revisited: an extension to the modified hydrodynamic theory of long rod penetration [J]. Science China Technological Sciences, 2010, 53(5): 1364–1373. DOI: 10.1007/s11431-010-0011-x.
    [13] 何雨. 长杆弹撞击下金属靶板侵彻与穿透的进一步研究 [D]. 合肥: 中国科技大学, 2013: 54−57.
    [14] 张先锋, 陈惠武, 赵有守. EFP对有限厚靶板侵彻过程及后效研究 [J]. 爆炸与冲击, 2006, 2(4): 323–327. DOI: 10.11883/1001-1455(2006)04-0323-05.

    ZHANG Xianfeng, CHEN Huiwu, ZHAO Youshou. Investigation of process and after effect of EFP penetration into target of finite thickness [J]. Explosion and Shock Waves, 2006, 2(4): 323–327. DOI: 10.11883/1001-1455(2006)04-0323-05.
    [15] 李睿, 黄正祥, 祖旭东, 等. 靶板在爆炸成型弹丸垂直侵彻下的层裂 [J]. 爆炸与冲击, 2018, 38(5): 1039–1044. DOI: 10.11883/1001-1455(2018)05-1039-06.

    LI Rui, HUANG Zhengxiang, ZU Xudong, et al. Theoretical analysis on the spallation of EFP vertical penetration target [J]. Explosion and Shock Waves, 2018, 38(5): 1039–1044. DOI: 10.11883/1001-1455(2018)05-1039-06.
    [16] YARIN A L, ROISMAN I V, WEBER K, et al. Model for ballistic fragmentation and behind-armor debris [J]. International Journal of Impact Engineering, 2000, 24(2): 171–201. DOI: 10.1016/S0734-743X(99)00048-2.
    [17] DALZELL M W, HAZELL P J, MEULMAN J H. Modelling behind-armour debris formed by the perforation of an EFP through a steel target [C] // CARLEONE J, ORPHAL D. 20th International Symposium on Ballistics. USA: DEStech Publications Inc., 2002: 23−27.
    [18] 王昕, 蒋建伟, 王树有, 等. 爆炸成型弹丸侵彻钢靶的后效破片云实验研究 [J]. 兵工学报, 2018, 39(7): 1284–1290. DOI: 10.3969/j.issn.1000-1093.2018.07.005.

    WANG Xin, JIANG Jianwei, WANG Shuyou, et al. Experimental research on fragments after explosively- formed projectile penetrating into steel target [J]. Acta Armamentarii, 2018, 39(7): 1284–1290. DOI: 10.3969/j.issn.1000-1093.2018.07.005.
    [19] WANG Yangyang, JIANG Jianwei, MENG Jiayu, et al. Effect of add-on explosive reactive armor on EFP penetration [C] // WOODLEY C, CULLIS I. 29th International Symposium on Ballistics. USA: DEStech Publications Inc., 2016: 2395−2406.
    [20] HELD M, HUANG N S, JIANG D, et al. Determination of the crater radius as a function of time of a shaped charge jet that penetrates water [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(2): 64–69. DOI: 10.1002/prep.19960210203.
    [21] BACKMAN M E, GOLDSMITH W. The mechanics of penetration of projectiles into targets [J]. International Journal of Engineering Science, 1978, 16(1): 1–99. DOI: 10.1016/0020-7225(78)90002-2.
    [22] ARNOLD W, ROTTENKOLBER E. Physics of behind armor debris threat reduction [J]. International Journal of Impact Engineering, 2006, 33: 53–61. DOI: 10.1016/j.ijimpeng.2006.09.021.
    [23] 邢柏阳, 郭锐, 刘荣忠, 等. 内嵌结构对末敏弹EFP成型影响研究 [J]. 弹箭与制导学报, 2016, 36(5): 37–40. DOI: 10.15892/j.cnki.djzdxb.2016.05.010.

    XING Boyang, GUO Rui, LIU Rongzhong, et al. Study on influence of the embedded structure on the terminal sensitive projectile EFP forming [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(5): 37–40. DOI: 10.15892/j.cnki.djzdxb.2016.05.010.
    [24] XING Boyang, LIU Rongzhong, GUO Rui, et al. Influence of the embedded structure on the EFP formation of compact terminal sensitive projectile [J]. Defence Technology, 2017, 13(4): 310–315. DOI: 10.1016/j.dt.2017.05.006.
    [25] BAI Y L, JOHNSON W. Plugging: physical understanding and energy absorption [J]. Metals Technology, 1982, 9(1): 182–190. DOI: 10.1179/030716982803285945.
    [26] 赵方宣, 沈兆欣, 刘宁, 等. 靶板材料对聚能射流跳弹角影响的数值模拟与试验 [J]. 含能材料, 2016, 24(1): 33–37. DOI: 10.11943/j.issn.1006-9941.2016.01.005.

    ZHAO Fangxuan, SHEN Zhaoxin, LIU Ning, et al. Numerical simulation and experimental research on the effect of target material on the ricochet angle of shaped charge jet [J]. Chinese Journal of Energetic Materials, 2016, 24(1): 33–37. DOI: 10.11943/j.issn.1006-9941.2016.01.005.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  5741
  • HTML全文浏览量:  2155
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-29
  • 修回日期:  2018-06-28
  • 网络出版日期:  2019-06-25
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回