Mechanical behavior of SFRC beams subjected to both impact and fire loadings
-
摘要: 为了探究冲击荷载与火灾联合作用下钢纤维混凝土(steel fiber reinforced concrete, SFRC)梁的力学性能,联合应用高性能落锤试验系统、四点弯曲实验装置与装配式电炉开展了4根SFRC梁的冲击实验与高温恒载实验,观察了其破坏模式并记录了跨中位移和钢筋应变的时程曲线,探讨了冲击损伤SFRC梁的抗火性能。此外,在实验研究的基础上,考虑材料的应变率强化效应及温度软化效应,建立数值模型,首先对梁进行冲击加载模拟,并以冲击模拟结果为初始状态,采用热-力“顺序”耦合方法,对冲击加载与高温恒载联合作用下SFRC梁的力学行为进行了三维宏观有限元数值模拟。同时,考虑混凝土内部结构非均质性的影响,采用类似步骤,开展了细观模拟。宏/细观模拟结果与实验结果的良好吻合验证了本文数值方法的合理性与有效性,并体现了细观方法的优越性。研究发现,冲击能量较小时,SFRC梁在冲击荷载作用下,尽管局部混凝土开裂,梁整体残余变形较小,抗火性能有一定程度的下降;随着钢纤维掺量增大,混凝土基体抗剪强度增大,SFRC梁在冲击荷载作用下的开裂形态由弯剪裂缝并存向以弯曲裂缝为主转变;冲击损伤SFRC梁在高温恒载作用下裂缝分布较为集中,且发生脆性破坏。Abstract: To explore the mechanical behavior of SFRC beams subjected to both impact and fire loadings, 4 beams were tested with high-performance drop-weight test system, four point bending test machine and assembled electric furnace. The beams were firstly subjected to impact loadings and then exposed to fire with a constant load. During the test process, the crack patterns of beams were observed while the time histories of mid-span deflections and rebar strain were recorded. Then, the fire resistance of these beams was discussed. Based on the experiment, three-dimensional macroscopic finite element numerical model considering the effects of strain rate and high temperature was established. The impact loading process was simulated firstly; and then taking simulation results as the initial state, SFRC beams subjected to both fire and constant loading were simulated with a sequentially coupled thermal-stress analysis method. Moreover, considering the heterogeneity of concrete’s internal structure, a meso-scale simulation was also conducted with the procedures similar to that in macroscopic simulation. Good agreement between both the macro-/meso-scale simulation results and the test results illustrates the rationality and effectiveness of the present numerical analysis methods. The advantages of mesoscopic model were indicated through the comparison of macro-/meso-scopic results. It has been found that when the impact energy is low, the local concrete is cracked but a small overall deformation is remained. Nevertheless, this degrades the fire resistance of SFRC beams to some ex-tent. When the steel fiber dosage increases, resulting in an increasing shear strength of concrete matrix, the coexistence phenomenon of bending and shear cracks of beams under the impact load is changed to bending cracks as a dominant. Moreover, when subjected to elevated temperatures with a constant load, the distribution of cracks on the impact-damaged SFRC beams is relatively concentrated and a brittle failure occurs.
-
表 1 钢纤维混凝土配合比
Table 1. Mix proportions of the steel fiber concrete
编号 钢纤维体积分数/% 体积质量/(kg·m−3) 抗压强度/ MPa 钢纤维 水 水泥 砂 粗骨料 减水剂 B-0 0 0 154 425 672 1 096 3.6 41.90 B-1 1 78 164 547 696 1 044 8.2 42.47 B-2 2 156 180 600 668 1 002 9.0 52.18 B-3 3 234 196 653 640 960 9.8 60.34 表 2 钢纤维物理性质
Table 2. Physical properties of the steel fibers
长度/mm 直径/mm 长径比 抗拉强度/MPa 密度/(kg·m−3) 30 0.6 50 1 100 7 800 -
[1] 方秦, 赵建魁, 陈力. 爆炸与火荷载联合作用下钢梁耐火极限的数值分析 [J]. 土木工程学报, 2010, 43(S1): 62–68.FANG Qin, ZHAO Jiankui, CHEN Li. Numerical simulation of fire resistance of steel beams subjected to blast and fire [J]. China Civil Engineering Journal, 2010, 43(S1): 62–68. [2] 方秦, 杨石刚, 陈力, 等. 天津港" 8·12”特大火灾爆炸事故建筑物和人员损伤破坏情况及其爆炸威力分析 [J]. 土木工程学报, 2017, 50(3): 12–18.FANG Qin, YANG Shigang, CHEN Li, et al. Analysis on the building damage, personnel casualties and blast energy of the " 8·12” explosion in Tianjin port [J]. China Civil Engineering Journal, 2017, 50(3): 12–18. [3] 吴波, 唐贵和. 近年来混凝土结构抗火研究进展 [J]. 建筑结构学报, 2010, 31(6): 110–121.WU Bo, TANG Guihe. State of the art of fire resistance study on concrete structures in recent years [J]. Journal of Building Structures, 2010, 31(6): 110–121. [4] 公伟, 胡克旭. 自密实混凝土结构抗火研究进展 [J]. 建筑结构学报, 2016, 37(3): 1–9.GONG Wei, HU Kexu. Progress of research on fire resistance of self-compacting concrete structures [J]. Journal of Building Structures, 2016, 37(3): 1–9. [5] DAUDEVILLE L, MALÉCOT Y. Concrete structures under impact [J]. European Journal of Environmental and Civil Engineering, 2011, 15(S1): 101–140. [6] 宁建国, 周风华, 王志华, 等. 强冲击载荷下钢筋混凝土的本构关系、破坏机理与数值方法 [J]. 中国科学: 技术科学, 2016, 46(4): 323–331.NING Jianguo, ZHOU Fenghua, WANG Zhihua, et al. Constitutive model, failure mechanism and numerical method for reinforced concrete under intensive impact loading [J]. Scientia Sinica: Technologica, 2016, 46(4): 323–331. [7] HAO H, HAO Y, LI J, et al. Review of the current practices in blast-resistant analysis and design of concrete structures [J]. Advances in Structural Engineering, 2016, 19(8): 1193–1223. DOI: 10.1177/1369433216656430. [8] 任晓虎, 霍静思, 陈柏生. 高温后钢管混凝土短柱落锤动态冲击试验研究 [J]. 振动与冲击, 2011, 30(11): 67–73. DOI: 10.3969/j.issn.1000-3835.2011.11.015.REN Xiaohu, HUO Jing-i, CHEN Baisheng. Dynamic behaviors of concrete-filled steel tubular stub columns after exposure to high temperature [J]. Journal of Vibration and Shock, 2011, 30(11): 67–73. DOI: 10.3969/j.issn.1000-3835.2011.11.015. [9] 任晓虎, 霍静思, 陈柏生. 火灾下钢管混凝土梁落锤冲击试验研究 [J]. 振动与冲击, 2012, 31(20): 110–115.REN Xiaohu, HUO Jingsi, CHEN Baisheng. Anti-impact behavior of concrete-filled steel tubular beams in fire [J]. Journal of Vibration and Shock, 2012, 31(20): 110–115. [10] PAN L, CHEN L, FANG Q, et al. A modified layered-section method for responses of fire-damaged reinforced concrete beams under static and blast loads [J]. International Journal of Protective Structures, 2016, 7(4): 495–517. DOI: 10.1177/2041419616658384. [11] ZHAI C, CHEN L, XIANG H, et al. Experimental and numerical investigation into RC beams subjected to blast after exposure to fire [J]. International Journal of Impact Engineering, 2016, 97: 29–45. DOI: 10.1016/j.ijimpeng.2016.06.004. [12] 方秦, 赵建魁, 陈力, 等. 爆炸与火荷载联合作用下钢柱变形与破坏的数值分析 [J]. 解放军理工大学学报(自然科学版), 2013, 14(4): 398–403.FANG Qin, ZHAO Jiankui, CHEN Li, et al. Numerical simulation of deformation and failure of steel columns subjected to blast and fire [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(4): 398–403. [13] 赵建魁, 方秦, 陈力, 等. 爆炸与火荷载联合作用下RC梁耐火极限的数值分析 [J]. 天津大学学报(自然科学与工程技术版), 2015, 48(10): 873–880.ZHAO Jiankui, FANG Qin, CHEN Li, et al. Numerical analysis of fire resistance of RC beams subjected to explosion and fire load [J]. Journal of Tianjin University (Science and Technology), 2015, 48(10): 873–880. [14] RUAN Z, CHEN L, FANG Q. Numerical investigation into dynamic responses of RC columns subjected for fire and blast [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 10–21. DOI: 10.1016/j.jlp.2015.01.009. [15] MORITA T, BEPPU M, SUZUKI M. An experimental study on the temperature and structural behavior of a concrete wall exposed to fire after a high-velocity impact by a hard projectile [J]. Fire Safety Journal, 2017, 91: 506–516. DOI: 10.1016/j.firesaf.2017.03.023. [16] CHOI S, LEE S, KIM J J. Impact or blast induced fire simulation of bi-directional PSC panel considering concrete confinement and spalling effect [J]. Engineering Structures, 2017, 149: 113–130. DOI: 10.1016/j.engstruct.2016.12.056. [17] 窦国钦, 杜修力, 李亮. 冲击荷载作用下钢纤维混凝土配筋梁性能试验 [J]. 天津大学学报(自然科学与工程技术版), 2015, 48(10): 864–872.DOU Guoqin, DU Xiuli, LI Liang. Experiment on behavior of reinforced concrete beams with steel fiber under impact load [J]. Journal of Tianjin University (Science and Technology), 2015, 48(10): 864–872. [18] ISO. ISO 834-1 Fire resistance Test on Elements of Building Construction [S]. Switzerland: International Standards Organization, 1999. [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 建筑构件耐火试验方法:GB/T 9978.1-2008 [S]. 北京: 中国标准出版社, 2008. [20] 中国工程建设标准化协会. 纤维混凝土结构技术规程: ECS38: 2004 [S]. 北京: 中国计划出版社, 2004. [21] 窦国钦, 杜修力, 李亮. 冲击荷载作用下高强钢筋混凝土梁性能试验 [J]. 天津大学学报(自然科学与工程技术版), 2014, 47(12): 1072–1080.DOU Guoqin, DU Xiuli, LI Liang. Experimental study on the behavior of high strength reinforced concrete beams under impact load [J]. Journal of Tianjin University (Science and Technology), 2014, 47(12): 1072–1080. [22] JIN L, ZHANG R, DOU G, et al. Experimental and numerical study of reinforced concrete beams with steel fibers subjected to impact loading [J]. International Journal of Damage Mechanics, 2018, 27(7): 1058–1083. DOI: 10.1177/1056789517721616. [23] LIAO W, LI M, ZHANG W, et al. Experimental studies and numerical simulation of behavior of RC beams retrofitted with HSSWM-HPM under impact loading [J]. Engineering Structures, 2017, 149: 131–146. DOI: 10.1016/j.engstruct.2016.07.040. [24] 金浏, 徐建东, 张仁波, 等. 钢筋混凝土梁抗冲击性能研究的细观数值模拟方法 [J]. 振动与冲击, 2018, 37(2): 57–65.JIN Liu, XU Jiandong, ZHANG Renbo, et al. A mesoscale numerical method for the simulation of the impact resistance performance of reinforced concrete beams [J]. Journal of Vibration and Shock, 2018, 37(2): 57–65. [25] LUBLINER J, OLLIVIER J, OLLER S, et al. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299–326. DOI: 10.1016/0020-7683(89)90050-4. [26] LEE J, FENVES G. Plastic-damage model for cyclic loading of concrete structures [J]. ASCE Journal of Engineering Mechanics, 1998, 124(8): 892–900. DOI: 10.1061/(ASCE)0733-9399(1998)124:8(892). [27] 中华人民共和国住房和城乡建设部. 钢纤维混凝土: JG/T 472-2015 [S]. 北京: 中国标准出版社, 2015. [28] XIAO S. Numerical study of dynamic behaviour of RC beams under cyclic loading with different loading rates [J]. Magazine of Concrete Research, 2015, 67(7): 325–334. DOI: 10.1680/macr.14.00239. [29] CEB-FIP. Fib bulletin 55 CEB-FIP model code 2010 [S]. Lausanne, Switzerland: International Federation for Structural Concrete, 2010. [30] 中国工程建设标准化协会. 建筑钢结构防火技术规范: CECS 200: 2006 [S]. 北京: 中国计划出版社, 2006. [31] European Committee for Standardization. Design of concrete structures - Part 1-2: General rules-structural fire design: EN 1992-1-2: 2004 [S]. Brussels: European Committee for Standardization, 2004. [32] ABBAS A A, SYED MOHSIN S M, COTSOVOS D M. A simplified finite element model for assessing steel fibre reinforced concrete structural performance [J]. Computers and Structures, 2016, 173: 31–49. DOI: 10.1016/j.compstruc.2016.05.017.