Static/dynamic tensiletest of unidirectional reinforced GFRP composites
-
摘要: 本文针对单向增强玻璃钢复合材料,进行了一系列静/动态拉伸试验,利用高速摄影与DIC相结合的方法,获得了材料不同方向、不同应变率的应力-应变曲线以及材料在不同方向上的动态失效应变,精确地描述了材料的静/动态拉伸及失效行为。实验结果表明,纤维增强方向在不同应变率(10−3、10、102 s−1)拉伸应力-应变曲线均存在一个刚度减小的刚度变化点N,变化后的Echanged分别为初始弹性模量Einitial的67.5%、39.0%、21.4%。此材料在不同应变率(10−3、10、102 s−1)拉伸情况下,纤维增强的方向1上强度最高(分别为608、967、1 123 MPa),方向2强度最低(分别为75、67、58 MPa),方向3强度较低(分别为90、151、221 MPa)。利用高速摄影与DIC相结合的方法,获得了100 s−1应变率下,不同铺层方向破坏时刻的动态失效参数(方向1~3的动态失效应变分别为0.267、0.078、0.099),可以更加精确地描述此单向增强玻璃钢复合材料的动态失效行为。Abstract: In this paper, a series of static/dynamic tensile tests are performed for unidirectionally reinforced GFRP composites. Using the combination of high-speed photography and DIC (digital image correlation) technology, true stress-strain curves in different directions and strain rates are obtained. We also obtained the dynamic failure strain of the material in different directions, which are used to accurately describe the dynamic tensile and failure behavior of the material. The experimental results show that there is a stiffness change point N in the fiber reinforcement direction under different strain rate (10−3, 10, 102 s−1) tensile conditions, and the modulus Echanged is 67.5%, 39% and 21.4% of the initial elastic modulus Einitial, respectively. The fiber has the highest strength in the 1 direction which is reinforced (608, 967 and 1 123 MPa, respectively) under different strain rates (10−3, 10 and 102 s−1). The direction 2 has the lowest strength (75, 67 and 58 MPa, respectively). The strength of direction 3 is a little weak (90, 151 and 221 MPa, respectively). With the combination of high-speed photography and the DIC technology, the dynamic failure parameters of different directions under the strain rate of 100 s−1 are obtained. The dynamic failure strain in 1−3 directions is 0.267, 0.078 and 0.099 respectively. The dynamic failure behavior of this unidirectional reinforced fiberglass composite can be more accurately described.
-
Key words:
- dynamic failure strain /
- digital image correlation /
- strain rate effect /
- stiffness
-
表 1 不同工况重复实验次数
Table 1. Times of repeated experiments under different conditions
方向 实验重复次数 准静态 10 s−1 100 s−1 方向 1 3 3 3 方向 2 3 3 3 方向 3 3 3 3 表 2 不同应变率、不同方向的强度、工程失效应变及方向1刚度
Table 2. Tensile strength and engineering failure strain of different strain rates in different directions and the stiffness in 1 direction
应变率 强度/MPa 方向 1 Einitial/GPa 方向 1 Echanged/GPa 失效应变 方向 1 方向 2 方向 3 方向 1 方向 2 方向 3 准静态 608 75 90 27.7 18.7 0.025 0.020 0.022 10 s−1 967 67 151 35.1 13.7 0.066 0.011 0.043 100 s−1 1 123 58 221 35.1 7.5 0.040 0.013 0.038 表 3 不同方向的动态失效应变及其它相关参数(应变率:100 s−1)
Table 3. Dynamic failure strain and other relevant parameters in different directions (strain rete: 100 s−1)
方向 Einitial/GPa σf/MPa εf εeff 1 27.7 1 123 0.040 0.267 2 3.6 58 0.013 0.078 3 4.1 221 0.038 0.099 -
[1] BEURA S, THATOI D N, CHAKRAVERTY A P, et al. Impact of the ambiance on GFRP composites and role of some inherent factors: A review report [J]. Journal of Reinforced Plastics and Composites, 2018, 37(8): 533–547. DOI: 10.1177/0731684418754359. [2] ZHANG L, BAI Y, CHEN W, et al. Thermal performance of modular GFRP multicellular structures assembled with fire resistant panels [J]. Composite Structures, 2017, 172: 22–33. DOI: 10.1016/j.compstruct.2017.03.076. [3] YAO L, SUN Y, GUO L, et al. Fibre bridging effect on the Paris relation of mode I fatigue delamination in composite laminates with different thicknesses [J]. International Journal of Fatigue, 2017, 103: 196–206. DOI: 10.1016/j.ijfatigue.2017.06.004. [4] NGUYEN Q T, NGO T D, BAI Y, et al. Experimental and numerical investigations on the thermal response of multilayer glass fibre/unsaturated polyester/organoclay composite [J]. Fire and Materials, 2016, 40(8): 1047–1069. DOI: 10.1002/fam.2364. [5] MANALO A, PAC M. Structural behaviour of pultruded fibre composites guardrail system under horizontal loading [J]. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials: Design & Applicationscations, 2015, 232(4): 273–286. DOI: 10.1177/1464420715622650. [6] JESUS M, LOBO P S, FAUSTINO P. Design models for circular and square RC columns confined with GFRP sheets under axial compression [J]. Composites Part B: Engineering, 2017, 141: 60–69. DOI: 10.1016/j.compositesb.2017.12.043. [7] 江洪, 张晓丹, 刘义鹤. 纤维复合材料在轨道交通中的应用概况 [J]. 新材料产业, 2017(22): 22–25. DOI: 10.3969/j.issn.1008-892X.2017.02.006.JIANG Hong, ZHANG Xiaodan, LIU Yihe. Application of fiber composites in rail transit [J]. New Materials Industry, 2017(22): 22–25. DOI: 10.3969/j.issn.1008-892X.2017.02.006. [8] SÉRGIO R L T, AQUINO E M F D. Fracture characteristics and anisotropy in notched glass fiber reinforced plastics [J]. Materials Research, 2014, 17(6): 1610–1619. DOI: 10.1590/1516-1439.302314. [9] PHAM P V, MOHAREB M. A shear deformable theory for the analysis of steel beams reinforced with GFRP plates [J]. Thin-Walled Structures, 2014, 85(85): 165–182. DOI: 10.1016/j.tws.2014.08.009. [10] REIS P N B, NETO M A, AMARO A M. Effect of the extreme conditions on the tensile impact strength of GFRP composites [J]. Composite Structures, 2018, 188: 48–54. DOI: 10.1016/j.compstruct.2018.01.001. [11] MORADPOUR P, PIRAYESH H, GERAMI M, et al. Laminated strand lumber (LSL) reinforced by GFRP; mechanical and physical properties [J]. Construction andBuilding Materials, 2018, 158: 236–242. DOI: 10.1016/j.conbuildmat.2017.09.172. [12] 刘华, 钱建华, 杨文玮, 等. UP/PU嵌段共聚树脂/玻璃纤维界面粘结性的研究 [J]. 热固性树脂, 2013(1): 41–45. DOI: 10.13650/j.cnki.rgxsz.2013.01.013.LIU Hua, QIAN Jianhua, YANG Wenwei, et al. Study on the bonding properties of UP/PU block copolymer / glass fiber interface [J]. Thermosetting Resin, 2013(1): 41–45. DOI: 10.13650/j.cnki.rgxsz.2013.01.013. [13] 张磊, 孙清, 王虎长, 等. E玻璃纤维增强环氧树脂基复合材料力学性能试验研究 [J]. 电力建设, 2010, 31(9): 118–121. DOI: 10.3969/j.issn.1000-7229.2010.09.030.ZHANG Lei, SUN Qing, WANG Huchang, et al. Experimental study on mechanical properties of E glass fiber reinforced epoxy resin matrix composites [J]. Electric Power Construction, 2010, 31(9): 118–121. DOI: 10.3969/j.issn.1000-7229.2010.09.030. [14] 陈鲁, 余亮, 李燕, 等. 玻璃钢作结构构件的材料力学性质的试验研究 [J]. 建筑建材装饰, 2015(23): 197–198, 190. DOI: 10.3969/j.issn.1674-3024.2015.23.127.CHEN Lu, YU Liang, LI Yan, et al. An experimental study on the mechanical properties of material of FRP as a structural member [J]. Building Materials Decoration, 2015(23): 197–198, 190. DOI: 10.3969/j.issn.1674-3024.2015.23.127. [15] 张燕南, 赵文政, 雒新宇, 等. 碳纤维编织复合材料拉伸变形测量及声发射监测 [J]. 工程塑料应用, 2017, 45(8): 97–100. DOI: 10.3969/j.issn.1001-3539.2017.08.021.ZHANG Yannan, ZHAO Wenzheng, LUO Xinyu, et al. Tensile deformation measurement and acoustic emission monitoring of carbon fiber braided composites [J]. Application of Engineering Plastics, 2017, 45(8): 97–100. DOI: 10.3969/j.issn.1001-3539.2017.08.021. [16] 张硕, 姚宁, 吴继平, 等. 玻璃纤维增强环氧树脂复合材料的力学性能 [J]. 电工材料, 2016(1): 11–14. DOI: 10.16786/j.cnki.1671-8887.eem.2016.01.003.ZHANG Shuo, YAO Ning, WU Jiping, et al. Mechanical properties of glass fiber reinforced epoxy composites [J]. Electrical Materials, 2016(1): 11–14. DOI: 10.16786/j.cnki.1671-8887.eem.2016.01.003.