单向增强玻璃钢复合材料静/动态拉伸实验研究

刘子尚 杨喆 魏延鹏 蔡军爽 赵士忠 黄晨光

刘子尚, 杨喆, 魏延鹏, 蔡军爽, 赵士忠, 黄晨光. 单向增强玻璃钢复合材料静/动态拉伸实验研究[J]. 爆炸与冲击, 2019, 39(9): 093101. doi: 10.11883/bzycj-2018-0193
引用本文: 刘子尚, 杨喆, 魏延鹏, 蔡军爽, 赵士忠, 黄晨光. 单向增强玻璃钢复合材料静/动态拉伸实验研究[J]. 爆炸与冲击, 2019, 39(9): 093101. doi: 10.11883/bzycj-2018-0193
LIU Zishang, YANG Zhe, WEI Yanpeng, CAI Junshuang, ZHAO Shizhong, HUANG Chenguang. Static/dynamic tensiletest of unidirectional reinforced GFRP composites[J]. Explosion And Shock Waves, 2019, 39(9): 093101. doi: 10.11883/bzycj-2018-0193
Citation: LIU Zishang, YANG Zhe, WEI Yanpeng, CAI Junshuang, ZHAO Shizhong, HUANG Chenguang. Static/dynamic tensiletest of unidirectional reinforced GFRP composites[J]. Explosion And Shock Waves, 2019, 39(9): 093101. doi: 10.11883/bzycj-2018-0193

单向增强玻璃钢复合材料静/动态拉伸实验研究

doi: 10.11883/bzycj-2018-0193
基金项目: “十三五”国家重点研发计划(2016YFB1200403)
详细信息
    作者简介:

    刘子尚(1993- ),男,硕士研究生,zishangliu@163.com

    通讯作者:

    魏延鹏(1982- ),男,博士,副研究员,weiyanpeng@imech.ac.cn

  • 中图分类号: O343.7

Static/dynamic tensiletest of unidirectional reinforced GFRP composites

  • 摘要: 本文针对单向增强玻璃钢复合材料,进行了一系列静/动态拉伸试验,利用高速摄影与DIC相结合的方法,获得了材料不同方向、不同应变率的应力-应变曲线以及材料在不同方向上的动态失效应变,精确地描述了材料的静/动态拉伸及失效行为。实验结果表明,纤维增强方向在不同应变率(10−3、10、102 s−1)拉伸应力-应变曲线均存在一个刚度减小的刚度变化点N,变化后的Echanged分别为初始弹性模量Einitial的67.5%、39.0%、21.4%。此材料在不同应变率(10−3、10、102 s−1)拉伸情况下,纤维增强的方向1上强度最高(分别为608、967、1 123 MPa),方向2强度最低(分别为75、67、58 MPa),方向3强度较低(分别为90、151、221 MPa)。利用高速摄影与DIC相结合的方法,获得了100 s−1应变率下,不同铺层方向破坏时刻的动态失效参数(方向1~3的动态失效应变分别为0.267、0.078、0.099),可以更加精确地描述此单向增强玻璃钢复合材料的动态失效行为。
  • 图  1  中应变率材料试验机系统

    Figure  1.  Intermediate strain rate material testing machine

    图  2  动态拉伸试验夹具

    Figure  2.  Fixture for dynamic tensile test specimen

    图  3  高速摄影装备

    Figure  3.  High speed photographic equipment

    图  4  纤维铺层方向及试件切割方向

    Figure  4.  The layer directions of fibers and the cutting directions of specimens

    图  5  试件形状与尺寸 (单位:mm)

    Figure  5.  Size of experimental specimens (unit: mm)

    图  6  准静态拉伸实验

    Figure  6.  Quasi-static tensile test

    图  8  试件破坏图

    Figure  8.  Tography of fractured specimens

    图  7  典型工况下重复试验的应力-应变曲线

    Figure  7.  Stress-strain curves of repeated tests under typical working conditions

    图  9  动态拉伸过程试件形貌

    Figure  9.  Specimen morphology under dynamic tensile condition

    图  10  方向1动态拉伸全场应变分布

    Figure  10.  Strain field in direction 1 under dynamic tension condition

    图  11  方向1在100 s−1应变率下应力-应变曲线

    Figure  11.  Stress-strain curve of the direction 1 at 100 s−1 strain rate

    图  12  准静态拉伸不同方向应力-应变曲线

    Figure  12.  Stress-strain curves in different directions under quasi-static condition

    图  13  方向1不同应变率拉伸应力-应变曲线

    Figure  13.  Tensile stress-strain curves of the direction 1 under different strain rates

    图  15  方向3不同应变率下拉伸应力-应变曲线

    Figure  15.  Tensile stress-strain curves of the direction 3 under different strain rates

    图  14  方向2不同应变率下拉伸应力-应变曲线

    Figure  14.  Tensile stress-strain curves of the direction 2 under different strain rates

    图  16  方向1在100 s−1应变率下动态失效区域

    Figure  16.  Dynamic failure region in the direction 1 at 100 s−1 strain rate

    图  17  方向2在100 s−1应变率下动态失效区域

    Figure  17.  Dynamic failure region in the direction 2 at 100 s−1 strain rate

    图  18  方向3在100 s−1应变率下动态失效区域

    Figure  18.  Dynamic failure region in the direction 3 at 100 s−1 strain rate

    表  1  不同工况重复实验次数

    Table  1.   Times of repeated experiments under different conditions

    方向 实验重复次数
    准静态 10 s−1 100 s−1
    方向 1 3 3 3
    方向 2 3 3 3
    方向 3 3 3 3
    下载: 导出CSV

    表  2  不同应变率、不同方向的强度、工程失效应变及方向1刚度

    Table  2.   Tensile strength and engineering failure strain of different strain rates in different directions and the stiffness in 1 direction

    应变率 强度/MPa 方向 1 Einitial/GPa 方向 1 Echanged/GPa 失效应变
    方向 1 方向 2 方向 3 方向 1 方向 2 方向 3
    准静态 608 75 90 27.7 18.7 0.025 0.020 0.022
    10 s−1 967 67 151 35.1 13.7 0.066 0.011 0.043
    100 s−1 1 123 58 221 35.1 7.5 0.040 0.013 0.038
    下载: 导出CSV

    表  3  不同方向的动态失效应变及其它相关参数(应变率:100 s−1)

    Table  3.   Dynamic failure strain and other relevant parameters in different directions (strain rete: 100 s−1)

    方向 Einitial/GPa σf/MPa εf εeff
    1 27.7 1 123 0.040 0.267
    2 3.6 58 0.013 0.078
    3 4.1 221 0.038 0.099
    下载: 导出CSV
  • [1] BEURA S, THATOI D N, CHAKRAVERTY A P, et al. Impact of the ambiance on GFRP composites and role of some inherent factors: A review report [J]. Journal of Reinforced Plastics and Composites, 2018, 37(8): 533–547. DOI: 10.1177/0731684418754359.
    [2] ZHANG L, BAI Y, CHEN W, et al. Thermal performance of modular GFRP multicellular structures assembled with fire resistant panels [J]. Composite Structures, 2017, 172: 22–33. DOI: 10.1016/j.compstruct.2017.03.076.
    [3] YAO L, SUN Y, GUO L, et al. Fibre bridging effect on the Paris relation of mode I fatigue delamination in composite laminates with different thicknesses [J]. International Journal of Fatigue, 2017, 103: 196–206. DOI: 10.1016/j.ijfatigue.2017.06.004.
    [4] NGUYEN Q T, NGO T D, BAI Y, et al. Experimental and numerical investigations on the thermal response of multilayer glass fibre/unsaturated polyester/organoclay composite [J]. Fire and Materials, 2016, 40(8): 1047–1069. DOI: 10.1002/fam.2364.
    [5] MANALO A, PAC M. Structural behaviour of pultruded fibre composites guardrail system under horizontal loading [J]. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials: Design & Applicationscations, 2015, 232(4): 273–286. DOI: 10.1177/1464420715622650.
    [6] JESUS M, LOBO P S, FAUSTINO P. Design models for circular and square RC columns confined with GFRP sheets under axial compression [J]. Composites Part B: Engineering, 2017, 141: 60–69. DOI: 10.1016/j.compositesb.2017.12.043.
    [7] 江洪, 张晓丹, 刘义鹤. 纤维复合材料在轨道交通中的应用概况 [J]. 新材料产业, 2017(22): 22–25. DOI: 10.3969/j.issn.1008-892X.2017.02.006.

    JIANG Hong, ZHANG Xiaodan, LIU Yihe. Application of fiber composites in rail transit [J]. New Materials Industry, 2017(22): 22–25. DOI: 10.3969/j.issn.1008-892X.2017.02.006.
    [8] SÉRGIO R L T, AQUINO E M F D. Fracture characteristics and anisotropy in notched glass fiber reinforced plastics [J]. Materials Research, 2014, 17(6): 1610–1619. DOI: 10.1590/1516-1439.302314.
    [9] PHAM P V, MOHAREB M. A shear deformable theory for the analysis of steel beams reinforced with GFRP plates [J]. Thin-Walled Structures, 2014, 85(85): 165–182. DOI: 10.1016/j.tws.2014.08.009.
    [10] REIS P N B, NETO M A, AMARO A M. Effect of the extreme conditions on the tensile impact strength of GFRP composites [J]. Composite Structures, 2018, 188: 48–54. DOI: 10.1016/j.compstruct.2018.01.001.
    [11] MORADPOUR P, PIRAYESH H, GERAMI M, et al. Laminated strand lumber (LSL) reinforced by GFRP; mechanical and physical properties [J]. Construction andBuilding Materials, 2018, 158: 236–242. DOI: 10.1016/j.conbuildmat.2017.09.172.
    [12] 刘华, 钱建华, 杨文玮, 等. UP/PU嵌段共聚树脂/玻璃纤维界面粘结性的研究 [J]. 热固性树脂, 2013(1): 41–45. DOI: 10.13650/j.cnki.rgxsz.2013.01.013.

    LIU Hua, QIAN Jianhua, YANG Wenwei, et al. Study on the bonding properties of UP/PU block copolymer / glass fiber interface [J]. Thermosetting Resin, 2013(1): 41–45. DOI: 10.13650/j.cnki.rgxsz.2013.01.013.
    [13] 张磊, 孙清, 王虎长, 等. E玻璃纤维增强环氧树脂基复合材料力学性能试验研究 [J]. 电力建设, 2010, 31(9): 118–121. DOI: 10.3969/j.issn.1000-7229.2010.09.030.

    ZHANG Lei, SUN Qing, WANG Huchang, et al. Experimental study on mechanical properties of E glass fiber reinforced epoxy resin matrix composites [J]. Electric Power Construction, 2010, 31(9): 118–121. DOI: 10.3969/j.issn.1000-7229.2010.09.030.
    [14] 陈鲁, 余亮, 李燕, 等. 玻璃钢作结构构件的材料力学性质的试验研究 [J]. 建筑建材装饰, 2015(23): 197–198, 190. DOI: 10.3969/j.issn.1674-3024.2015.23.127.

    CHEN Lu, YU Liang, LI Yan, et al. An experimental study on the mechanical properties of material of FRP as a structural member [J]. Building Materials Decoration, 2015(23): 197–198, 190. DOI: 10.3969/j.issn.1674-3024.2015.23.127.
    [15] 张燕南, 赵文政, 雒新宇, 等. 碳纤维编织复合材料拉伸变形测量及声发射监测 [J]. 工程塑料应用, 2017, 45(8): 97–100. DOI: 10.3969/j.issn.1001-3539.2017.08.021.

    ZHANG Yannan, ZHAO Wenzheng, LUO Xinyu, et al. Tensile deformation measurement and acoustic emission monitoring of carbon fiber braided composites [J]. Application of Engineering Plastics, 2017, 45(8): 97–100. DOI: 10.3969/j.issn.1001-3539.2017.08.021.
    [16] 张硕, 姚宁, 吴继平, 等. 玻璃纤维增强环氧树脂复合材料的力学性能 [J]. 电工材料, 2016(1): 11–14. DOI: 10.16786/j.cnki.1671-8887.eem.2016.01.003.

    ZHANG Shuo, YAO Ning, WU Jiping, et al. Mechanical properties of glass fiber reinforced epoxy composites [J]. Electrical Materials, 2016(1): 11–14. DOI: 10.16786/j.cnki.1671-8887.eem.2016.01.003.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  5869
  • HTML全文浏览量:  1618
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-01
  • 修回日期:  2018-10-16
  • 网络出版日期:  2019-08-25
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回