Failure modes and shock resistance of sandwich panels with layered-gradient aluminum foam cores under air-blast loading
-
摘要: 采用弹道冲击摆系统开展了爆炸载荷下分层梯度泡沫铝夹芯板的变形/失效模式和抗冲击性能实验研究,并配合激光位移传感器得到试件后面板中心点的挠度-时程响应曲线。研究了炸药当量和芯层组合方式对夹芯板试件变形/失效模式和抗冲击性能的影响。实验结果表明,泡沫铝夹芯板的变形/失效模式主要表现为面板的非弹性大变形,芯层压缩变形、芯层拉伸断裂以及芯层剪切失效。在研究爆炸冲量范围内,非梯度芯层夹芯板的抗冲击性能明显优越于所有分层梯度芯层夹芯板。对于分层梯度夹芯板试件,爆炸冲量较小时芯层组合形式对分层梯度芯层夹芯板的抗冲击性能的影响不大,而爆炸冲量较大时,最大相对密度芯层靠近前面板组合形式的分层梯度夹芯板试件抗冲击性能较好。研究结果可为泡沫金属夹芯结构的优化设计提供参考。Abstract: In this work we investigated the deformation/failure modes and shock resistance performance of sandwich panels with layered-gradient aluminum foam cores under air-blast loading by experiment using a ballistic pendulum device, the deflection-time history curves in the central point of the back face-sheet were measured using a laser displacement sensor, and examined the influences of the charge mass and core-layer arrangement on the failure modes and the shock resistance of the specimens. The results showed that the sandwich panel specimens failed due to the large inelastic deformation of the face-sheets, the core compression, the tensile fracture and the shear failure of the core. The shock resistance performance of the ungraded sandwich panels was found to be superior to all the graded core sandwich configurations. For the sandwich panels with layered-gradient cores, the improvement of the core-layer arrangement on the shock resistance of the specimens was not obvious under small blast impulse, while that of the graded specimens containing the top core-layer with the largest relative density demonstrated a remarkably greater shock resistance. These findings can serve as guidance in the optimal design of metallic foam core sandwich structures.
-
Key words:
- sandwich panel /
- blast loading /
- core configurations /
- deformation/failure modes /
- shock resistance
-
表 1 梯度泡沫铝夹芯板芯层的组合方式
Table 1. Configurations for sandwichpanel’s different cores
编号 上芯层相对密度 中间芯层相对密度 下芯层相对密度 G1 0.11 0.16 0.21 G2 0.11 0.21 0.16 G3 0.16 0.11 0.21 G4 0.16 0.21 0.11 G5 0.21 0.11 0.16 G6 0.21 0.16 0.11 U 0.16 表 2 三种炸药当量下的爆炸冲量值
Table 2. Impulse’s values at three differentexplosive masses
炸药当量/g I /(N·s) I1 /(N·s) I2 /(N·s) I1/I 30 23.82 17.51 6.31 73.5% 40 34.58 23.16 11.42 67.0% 50 41.13 27.83 13.30 67.7% 表 3 不同芯层组合方式的夹芯板参数拟合结果
Table 3. Fitted results of sandwich plate parametersk and b for different types
编号 k /(mm·(N·s)−1) b /mm R2 G1 1.68 −5.16 0.964 G2 1.56 −3.42 0.940 G3 1.99 −12.75 0.997 G4 1.78 −12.25 0.998 G5 1.29 −0.47 0.944 G6 1.45 −3.17 0.976 U 1.43 −10.28 0.960 -
[1] ZHU Feng, ZHAO Longmao, LU Guoxing, et al. Deformation and failure of blast-loaded metallic honeycomb sandwich panels-Experimental investigations [J]. International Journal of Impact Engineering, 2008, 35(9): 1063–1074. DOI: 10.1016/j.ijimpeng.2007.11.003. [2] JING Lin, SU Xingya, CHEN De, et al. Experimental and numerical study of sandwich beams with layered-gradient foam cores under low-velocity impact [J]. Thin-walled Structures, 2019, 135: 227–244. DOI: 10.1016/j.tws.2018.11.011. [3] 敬霖, 王志华, 赵隆茂. 多孔金属及其夹芯结构力学性能的研究进展 [J]. 力学与实践, 2015, 37(1): 1–24. DOI: 10.6052/1000-0879-14-180.JING Lin, WANG Zhihua, ZHAO Longmao. Advances in studies of the mechanical performance of cellular metals and related sandwich structures [J]. Mechanics in Engineering, 2015, 37(1): 1–24. DOI: 10.6052/1000-0879-14-180. [4] YU Jilin, WANG Erheng, LI Jianrong, et al. Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending [J]. International Journal of Impact Engineering, 2008, 35(8): 885–894. DOI: 10.1016/j.ijimpeng.2008.01.006. [5] CALISKAN U, APALAK M K. Low velocity bending impact behavior of foam core sandwich beams: experimental [J]. Composites Part B, 2017, 112: 158–175. DOI: 10.1016/j.compositesb.2016.12.038. [6] JING Lin, WANG Zhihua, ZHAO Longmao. The dynamic response of sandwich panels with cellular metal cores to localized impulsive loading [J]. Composites: Part B, 2016, 94: 52–63. DOI: 10.1016/j.compositesb.2016.03.035. [7] JING Lin, YANG Fei, ZHAO Longmao. Perforation resistance of sandwich panels with layered gradient metallic foam cores [J]. Composite Structures, 2017, 171: 217–226. DOI: 10.1016/j.compstruct.2017.02.097. [8] RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core [J]. International Journal of Impact Engineering, 2008, 35(8): 829–844. DOI: 10.1016/j.ijimpeng.2007.10.006. [9] GOEL M D, MATSAGAR V A, GUPTA A K. Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam [J]. International Journal of Impact Engineering, 2015, 77: 134–146. DOI: 10.1016/j.ijimpeng.2014.11.017. [10] JING Lin, WANG Zhihua, ZHAO Longmao. An approximate theoretical analysis for clamped cylindrical sandwich shells with metallic foam cores subjected to impulsive loading [J]. Composites: Part B, 2014, 60: 150–157. [11] RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures, 2006, 43(7−8): 2243–2259. DOI: 10.1016/j.ijsolstr.2005.07.006. [12] JING Lin, WANG Zhihua, SHIM V P W, et al. An experimental study of the dynamic response cylindrical sandwich shells with metallic foam subjected to blast loading [J]. International Journal of Impact Engineering, 2014, 71: 60–72. DOI: 10.1016/j.ijimpeng.2014.03.009. [13] JING Lin, WANG Zhihua, ZHAO Longmao. Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading−numerical simulations [J]. Composite Structures, 2013, 99: 213–223. DOI: 10.1016/j.compstruct.2012.12.013. [14] KUMAR P, LEBLANC J, STARGEL D S, et al. Effect of plate curvature on blast response of aluminum panels [J]. International Journal of Impact Engineering, 2012, 46(6): 74–85. DOI: 10.1016/j.ijimpeng.2012.02.004. [15] KUMAR P, STARGEL D S, SHUKLA A. Effect of plate curvature on blast response of carbon composite panels [J]. Composite Structure, 2013, 99(4): 19–30. DOI: 10.1016/j.compstruct.2012.11.036. [16] 夏志成, 王曦浩, 赵跃堂, 等. 钢板夹泡沫铝组合板抗爆性能研究 [J]. 振动与冲击, 2017, 36(2): 117–122. DOI: 10.13465/j.cnki.jvs.2017.02.019.XIA Zhicheng, WANG Xihao, ZHAO Yuetang, et al. Anti-blast performance of aluminum foam-core sandwich panels [J]. Journal of Vibration and Shock, 2017, 36(2): 117–122. DOI: 10.13465/j.cnki.jvs.2017.02.019. [17] CHEN De, JING Lin, YANG Fei. Optimal design of sandwich panels with layered-gradient aluminum foam cores under air-blast loading [J]. Composites: Part B, 2019, 166: 169–186. doi: 10.1016/j.compositesb.2018.11.125 [18] 敬霖, 王志华, 赵隆茂. 爆炸载荷作用下结构冲量的测量 [J]. 实验力学, 2009, 24: 151–156.JING Lin, WANG Zhihua, ZHAO Longmao. Measurement of the impulse of structures subjected to blast loading [J]. Journal of Experimental Mechanics, 2009, 24: 151–156. [19] 敬霖, 王志华, 赵隆茂, 等. 撞击载荷下泡沫铝夹芯梁的塑性动力响应 [J]. 爆炸与冲击, 2010, 30(6): 561–568.JING Lin, WANG Zhihua, ZHAO Longmao, et al. Dynamic plastic response of foam sandwich beams subjected to impact loading [J]. Explosion and Shock Waves, 2010, 30(6): 561–568.