An inverse method for the equation of state of detonation products from underwater explosion tests
-
摘要: 由于水下爆炸过程中爆轰产物的信息以水中压缩波形式向外传递,本文旨在探讨如何利用水下爆炸试验数据确定爆轰产物的状态方程。相较于常规圆筒试验,水下爆炸试验具有装置简单成本低、装药尺寸限制少、测定压力范围更广的特点,更适用于大药量或非理想炸药的现场测试。本文从水中冲击波轨迹和波后压力时程曲线出发,发展了由冲击波及其波后流场还原水气界面的逆特征线算法,以及根据水气界面确定爆轰产物状态方程的遗传算法。与水下爆炸正演结果对比,发现逆特征线法可以较准确地还原水气界面的位置和压力参数,有效压力下限可达2 MPa,远低于圆筒试验的测试下限0.1 GPa。根据水气界面的反演结果,遗传算法也能稳定地优化JWL方程参数,8种常用炸药的等熵衰减压力误差在爆压至0.01 GPa的区间内都小于3%。结果表明,利用本文的逆特征线算法和遗传算法,理论上可以反演出压力范围较宽、准确性较高的爆轰产物状态方程。Abstract: Since the information of detonation product is transmitted outward in the form of compression wave during underwater explosion, the purpose of this paper is to explore how to determine the equation of state (EOS) of detonation products using underwater explosion tests. Compared with conventional cylinder test, underwater explosion test has the advantages of simpler equipment, lower cost, less limited charge size, and wider range of calibration pressures, which makes it more suitable for the on-site testing of large or non-ideal explosives. Based on the measurable shock wave trajectory and post-shock pressure history in general underwater explosion test, an inverse method of characteristics (inverse MOC) is proposed to recover the gas-water interface from the shock and post-shock data, and a genetic algorithm is developed to determine the EOS of detonation products by the gas-water interface. Compared with virtual experimental data extracted from underwater explosion simulations, it is found that the inverse MOC can properly reproduce the position and pressure of gas-water interface. The lower limit of pressure range is close to 2 MPa, which is far lower than that of 0.1 GPa in cylinder test. Based on the inversed results of gas-water interface, it is also confirmed that the genetic algorithm can also stably optimize the parameters of JWL equation because the isentrope pressure error of eight commonly used explosives is less than 3% in the range of detonation pressure 0.01 GPa. The results show that it is by the inverse MOC and genetic algorithm that the EOS of detonation products can be properly and stably determined by the underwater explosion test data.
-
表 1 状态方程参数的二进制编码
Table 1. Binary encoding of JWL EOS parameters
参数 范围 网格数 分辨率 样本 R1 3.00~8.11 29 (512) 0.010 010010110 (4.5) R2 0.500~3.05 28 (256) 0.010 01011010 (1.4) ω 0.200~0.515 26 (64) 0.005 001010 (0.25) 表 2 交叉操作与突变操作的示意过程
Table 2. Schematic process of crossover operation and mutation operation
R1 交叉 突变 Samlpe 1 001010101×010101010→001101010+010010101 010(0)10101→010(1)10101 (3.85)×(4.70)→(4.06)+(4.49) (4.49)→(4.81) Samlpe 2 001111111×010000000→001000000+010111111 0101(1)111(1)→0101(0)111(0) (4.27)×(4.28)→(3.64)+(4.91) (4.91)→(4.74) 表 3 几种炸药的爆轰参数
Table 3. Detonation parameters of several explosives
炸药 ρ0/(g·cm−3) D /(km·s−1) pJ/GPa E0/(GJ·m−3) ANFO 0.931 4.160 5.15 2.48 C4 1.601 8.193 28.0 9.0 Comp B 1.717 7.980 29.5 8.5 HNS 1.40 1.400 6.340 14.5 6.0 LX-01 1.230 6.840 15.5 6.1 PETN 1.50 1.500 7.450 22.0 8.56 Tetryl 1.730 7.910 28.5 8.2 TNT 1.630 6.930 21.0 6.0 表 4 JWL方程参数的反演结果与标准数据对比
Table 4. Comparison between inversed results and reference parameters of JWL EOS
实验 A/GPa B/GPa C/GPa R1 R1 ω 最大误差(p>0.01 GPa)/% ANFO (1) 49.46 1.89 0.474 3.90 1.10 0.333 3 − ANFO (2) 50.82 2.101 0.437 3.96 1.11 0.32 2.8 C4 (1) 609.77 12.95 1.043 4.50 1.40 0.25 − C4 (2) 610.64 12.71 1.033 4.50 1.38 0.25 1.3 Comp B (1) 524.23 7.678 1.082 4.20 1.10 0.34 − Comp B (2) 528.29 8.021 1.087 4.22 1.10 0.35 2.9 HNS 1.40 (1) 366.5 6.75 1.163 4.80 1.40 0.32 − HNS 1.40 (2) 365.60 6.482 1.157 4.79 1.37 0.32 1.0 LX-01 (1) 311.04 4.761 1.042 4.50 1.00 0.35 − LX-01 (2) 305.98 4.244 1.007 4.45 0.95 0.34 2.0 PETN 1.50 (1) 625.3 23.29 1.149 5.25 1.60 0.28 − PETN 1.50 (2) 630.48 23.52 1.111 5.27 1.59 0.275 1.3 Tetryl (1) 586.83 10.67 0.774 4.40 1.20 0.275 − Tetryl (2) 584.47 10.51 0.768 4.39 1.20 0.27 1.1 TNT (1) 373.77 3.7471 0.735 4.15 0.90 0.35 − TNT (2) 376.61 4.011 0.769 4.17 0.92 0.36 1.7 注:(1) Reference parameters;(2) Inversed results -
[1] 孙承纬. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 272−273. [2] WILKINS M, SQUIER B, HALPERIN B. The Equation of State of PBX 9404 and LX 04-01: UCRL-7797 [R]. USA: Lawrence Radiation Laboratory, 1964. [3] KURY J W, HORNIG H C, LEE E L, et al. Metal acceleration by chemical explosives [C] // Fourth International Symposium on Detonation. Arlington, Texas: Office of Naval Research, 1965: 3−12. [4] LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422[R]. University of California Radiation Laboratory, 1968. DOI: 10.2172/4783904 [5] LEE E L, FINGER M, COLLINS W. JWL equation of state coefficients for high explosives: UCID-16189 [R]. Lawrence Livermore Laboratory, 1973. [6] FORBES J W, LEMAR E R. Detonation wave velocity and curvature of a plastic-bonded, nonideal explosive PBXN-111 as a function of diameter and confinement [J]. Journal of Applied Physics, 1998, 84(12): 6600–6605. DOI: 10.1063/1.369033. [7] 韩勇, 黄辉, 黄毅民, 等. 不同直径含铝炸药的作功能力 [J]. 火炸药学报, 2008, 31(6): 5–7. DOI: 10.3969/j.issn.1007-7812.2008.06.002.HAN Yong, HUANG Hui, HUANG Yimin, et al. Power of aluminized explosives with different diameters [J]. Chinese Journal of Explosives & Propellants, 2008, 31(6): 5–7. DOI: 10.3969/j.issn.1007-7812.2008.06.002. [8] HOLTON W C. The detonation pressures in explosives as measured by transmitted shocks in water [R]. Naval Ordnance Laboratory, 1954. [9] COOK M A, PACK D H, MCEWAN W S. Promotion of shock initiation of detonation by metallic surfaces [J]. Transactions of the Faraday Society, 1960, 56: 1028–1038. DOI: 10.1039/tf9605601028. [10] RIGDON J K. Explosive performance: SANL-712-004 [R]. Office of Scientific & Technical Information Technical Reports, 1969. DOI: 10.2172/532483. [11] BJARNHOLT G. Suggestions on standards for measurement and data evaluation in the underwater explosion test [J]. Propellants, Explosives, Pyrotechnics, 1980, 5(2-3): 67–74. DOI: 10.1002/prep.19800050213. [12] BJARNHOLT G. Strength testing of explosives by underwater detonation [J]. Propellants, Explosives, Pyrotechnics, 1978, 3(1-2): 70–71. DOI: 10.1002/prep.19780030117. [13] MADER C L, GAGE W R. Fortran sin: a one-dimensional hydrodynamic code for problems which include chemical reactions, elastic-plastic flow, spalling, and phase transitions: LA-3720[R]. USA: Los Alamos Scientific Laboratory, 1967. [14] HAMASHIMA H, KATO Y, ITOH S. Determination of JWL Parameters for Non-Ideal Explosive [C] // AIP conference proceedings. AIP, 2004, 706(1): 331−334. DOI: 10.1063/1.1780246 [15] 李晓杰, 张程娇, 王小红, 闫鸿浩. 水的状态方程对水下爆炸影响的研究 [J]. 工程力学, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180.LI Xiaojie, ZHANG Chengjiao, WANG Xiaohong, YAN Honghao. Numerical study on the effect of equations of state of water on underwater explosions [J]. Engineering Mechanics, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180. [16] 李科斌, 李晓杰, 闫鸿浩, 王小红. 一种可实现水下爆炸参数连续测量的新型电测方法 [J]. 兵工学报, 2017, 38(S1): 108–112.LI Kebin, LI Xiaojie, YAN Honghao, WANG Xiaohong. New electrometric method for the continuous measurement of underwater explosion parameters [J]. Acta Armamentarii, 2017, 38(S1): 108–112. [17] 李晓杰, 张程娇, 闫鸿浩, 等. 水下爆炸近场非均熵流的特征线差分解法 [J]. 爆炸与冲击, 2012, 32(6): 604–608. DOI: 10.3969/j.issn.1001-1455.2012.06.008.LI Xiaojie, ZHANG Chengjiao, YAN Honghao, et al. Difference method of characteristics in isentropic flow of underwater explosion in near-field region [J]. Explosion and Shock Waves, 2012, 32(6): 604–608. DOI: 10.3969/j.issn.1001-1455.2012.06.008. [18] 李晓杰, 杨晨琛, 张程娇, 闫鸿浩, 王小红. 水下爆炸非均熵二维定常流的三族特征线解法 [J]. 爆炸与冲击, 2017: 1–8. DOI: 10.11883/1001-1455(2017)01-0001-09.LI Xiaojie, Yang Chenchen, YAN Honghao, WANG Xiaohong. A Fdm of three characteristic lines of two-dimensional non-isentropic steady flow of cylindrical explosive underwater explosion [J]. Explosion and Shock Waves, 2017: 1–8. DOI: 10.11883/1001-1455(2017)01-0001-09. [19] 池家春, 马冰. TNT/RDX(40/ 60)炸药球水中爆炸波研究 [J]. 高压物理学报, 1999, 13(3): 199–204. DOI: 10.3969/j.issn.1000-5773.1999.03.008.CHI Jiachun, MA Bing. Underwater explosion wave by a spherical charge of composition B-3 [J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 199–204. DOI: 10.3969/j.issn.1000-5773.1999.03.008. [20] CARRION P M. Computation of velocity and density profiles of acoustic media with vertical inhomogeneities using the method of characteristics applied to the slant stacked data [J]. The Journal of the Acoustical Society of America, 1985, 77(4): 1370–1376. DOI: 10.1121/1.392028. [21] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock waves [C] // Proceedings of the first international hypersonic waverider symposium. University of Maryland College Park, 1990: 17−19. [22] 钱翼稷. 超音速轴对称有旋流特征线法的计算程序 [J]. 北京航空航天大学学报, 1996, 22(4): 454–459.QIAN Yiji. Computer program of supersonic axisymmetric rotational characteristic method [J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(4): 454–459. [23] 乔文友, 黄国平, 夏晨, 汪明生. 发展用于高速飞行器前体/进气道匹配设计的逆特征线法 [J]. 航空动力学报, 2014, 29(06): 1444–1452.QIAO Wenyou, HUANG Guoping, XIA Chen, WANG Mingsheng. Development of inverse characteristic method for matching design of high-speed aircraft forebody/inlet [J]. Journal of Aerospace Power, 2014, 29(06): 1444–1452. [24] YANG C, LI X, ZHANG C. Numerical study of two-dimensional cylindrical underwater explosion by a modified method of characteristics [J]. Journal of Applied Physics, 2017, 122(10): 105903. DOI: 10.1063/1.4986881. [25] 张程娇. 炸药爆轰产物参数的特征线差分反演方法研究[D]. 大连理工大学, 2016: 101−102. [26] 师学明, 王家映. 地球物理资料非线性反演方法讲座(四)遗传算法 [J]. 工程地球物理学报, 2008(02): 129–140. DOI: 10.3969/j.issn.1672-7940.2008.02.001.SHI Xueming, WANG Jiaying. Lecture on non-linear inverse methods in geophysics (4) Genetic Algorithm Method [J]. Chinese Journal of Engineering Geophysics, 2008(02): 129–140. DOI: 10.3969/j.issn.1672-7940.2008.02.001. [27] 江厚满, 张若棋, 张寿齐. 用遗传算法确定材料物态方程参数 [J]. 高压物理学报, 1998(01): 48–54.JIANG Houman, JIANG Ruoqi, ZHANG Shouqi. Applying genetic algorithm to determine parameters in equation of state [J]. Chinese Journal of High Pressure Physics, 1998(01): 48–54. [28] 温丽晶, 段卓平, 张震宇, 欧卓成, 黄风雷. 采用遗传算法确定炸药爆轰产物JWL状态方程参数 [J]. 爆炸与冲击, 2013, 33(S1): 130–134.WEN Lijing, DUAN Zhuoping, ZHANG Zhengyu, OU Zhuocheng, HUANG Fenglei. Determination of JWL-EOS parameters for explosive detonation products using genetic algorithm [J]. Explosion and Shock Waves, 2013, 33(S1): 130–134. [29] 王成, 徐文龙, 郭宇飞. 基于基因遗传算法和γ律状态方程的JWL状态方程参数计算 [J]. 兵工学报, 2017, 38(S1): 167–173.WANG Cheng, XU Wenlong, GUO Yufei. Calculation of JWL equation of state parameters based on genetic algorithm and γ equation of state [J]. Acta Armamentarii, 2017, 38(S1): 167–173. [30] STOFFA P L, SEN M K. Nonlinear multiparameter optimization using genetic algorithms: Inversion of plane-wave seismograms [J]. Geophysics, 1991, 56(11): 1794–1810. DOI: 10.1190/1.1442992. [31] DOBRATZ B, CRAWFORD P. LLNL handbook of explosives: UCRL-52997[R]. Lawrence Livermore National Laboratory, 1985. [32] PLESSET M S, PROSPERETTI A. Bubble dynamics and cavitation [J]. Annual review of fluid mechanics, 1977, 9(1): 145–185. DOI: 10.1146/annurev.fl.09.010177.001045.