• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

气泡及其破碎兴波对浮动冲击平台影响探究

王志凯 周鹏 孙波 姚熊亮 杨娜娜

王志凯, 周鹏, 孙波, 姚熊亮, 杨娜娜. 气泡及其破碎兴波对浮动冲击平台影响探究[J]. 爆炸与冲击, 2019, 39(9): 093201. doi: 10.11883/bzycj-2018-0212
引用本文: 王志凯, 周鹏, 孙波, 姚熊亮, 杨娜娜. 气泡及其破碎兴波对浮动冲击平台影响探究[J]. 爆炸与冲击, 2019, 39(9): 093201. doi: 10.11883/bzycj-2018-0212
WANG Zhikai, ZHOU Peng, SUN Bo, YAO Xiongliang, YANG Nana. Influence of bubbles and breaking waves on floating shock platform[J]. Explosion And Shock Waves, 2019, 39(9): 093201. doi: 10.11883/bzycj-2018-0212
Citation: WANG Zhikai, ZHOU Peng, SUN Bo, YAO Xiongliang, YANG Nana. Influence of bubbles and breaking waves on floating shock platform[J]. Explosion And Shock Waves, 2019, 39(9): 093201. doi: 10.11883/bzycj-2018-0212

气泡及其破碎兴波对浮动冲击平台影响探究

doi: 10.11883/bzycj-2018-0212
基金项目: 国家自然科学基金(11602069,51779056);黑龙江省自然科学基金(E2017026);中国博士后科学基金(2017M611359)支持
详细信息
    作者简介:

    王志凯(1989- ),男,博士,讲师,wangzhikai@hrbeu.edu.cn

    通讯作者:

    姚熊亮(1963- ),男,博士,教授,yaoxiongliang@hrbeu.edu.cn

  • 中图分类号: O383.1

Influence of bubbles and breaking waves on floating shock platform

  • 摘要: 基于LS-DYNA软件中的ALE算法,对近水面水下爆炸气泡脉动过程进行数值模拟并与实验结果进行对比,验证了近水面近壁面混合边界有限元模型和参数设置的正确性。设置不同爆炸工况,对气泡及其破碎兴波对浮动冲击平台影响进行探究,结果表明:在水下爆炸过程中,气泡、自由面、浮动冲击平台会发生强烈的耦合作用,在气泡脉动阶段,气泡会诱导出涌流和水冢效应,影响浮动冲击平台的安全性和使用性;冲击波是影响浮动冲击平台冲击环境的主要因素,由于气泡的低频性,气泡脉动及水冢对浮动冲击平台的直接冲击作用,会小幅度增加浮动冲击平台冲击环境的谱速度值、谱位移值,对谱加速度值几乎无影响;水冢抨击水面所形成的波浪和气泡破碎兴波,对浮动冲击平台造成的激励载荷呈周期性,其周期与波浪周期相同。波浪的激励载荷仅通过激励其对应频率的浮动冲击平台共振来改变平台的冲击环境。波浪载荷很小,对浮动冲击平台的冲击环境影响较小。
  • 图  1  混合边界条件时工况示意图及有限元图

    Figure  1.  Illustration of working and finite element view in complex boundary conditions

    图  2  混合边界条件时爆炸气泡实验结果与计算结果对比

    Figure  2.  Experimental and numerical results of bubble in complex boundary conditions

    图  3  平台有限元模型

    Figure  3.  Finite element model of floating shock platform

    图  4  不同水平距离工况示意图

    Figure  4.  Illustration of working conditions at different horizontal dimensionless distances

    图  5  工况2水冢形态演变及平台运动响应

    Figure  5.  Water spike’s shape and evolution process and platform’s motion response in working condition 2

    图  6  工况6水冢形态演变及平台运动响应

    Figure  6.  Water spike’s shape and evolution process and platform’s motion response in working condition 6

    图  7  不同水平位移下平台升沉运动响应

    Figure  7.  Platform’s heave motion response in different horizontal displacements

    图  8  不同水平位移下平台横摇运动响应

    Figure  8.  Platform’s roll motion response in different horizontal displacements

    图  9  不同水平位移下平台横荡运动响应探究

    Figure  9.  Platform’s traverse motion response in different horizontal displacements

    图  10  工况2冲击加速度时历曲线

    Figure  10.  Shock acceleration time history curve of working condition 2

    图  11  冲击波作用时间对冲击响应谱影响对比图

    Figure  11.  Effect of shock wave’s action time on shock spectrum in comparison

    图  12  气泡脉动对冲击响应谱影响对比图

    Figure  12.  Effect of bubble pulsation on shock spectrum in comparison

    图  13  后期波浪对冲击响应谱影响对比图

    Figure  13.  Effect of later wave on shock spectrum in comparison

    图  14  波浪作用对平台加速度响应影响图

    Figure  14.  Later wave’s effect on shock acceleration response time

    图  15  波浪对比时冲击谱参数随冲击因子变化关系

    Figure  15.  Relationship between shock spectrum parameters and shock factor in wave contrast

    表  1  不同水平距离工况布置情况

    Table  1.   Layout of working conditions at different horizontal dimensionless distances

    工况编号炸药当量/kg水平爆距/m竖直爆距/m爆距/m冲击因子C
    工况1600.667.037.061.10
    工况2601.257.037.141.08
    工况3602.487.037.451.04
    工况4604.307.038.240.94
    工况5606.127.039.320.83
    工况6606.717.039.720.80
    工况7607.947.0310.600.73
    工况8609.767.0312.030.64
    工况96011.587.0313.550.57
    下载: 导出CSV

    表  2  冲击环境参数与冲击因子关系式

    Table  2.   Relationship between shock response spectrum parameters and shock factor

    冲击环境参数近似拟合曲线方程
    谱速度(Y1)Y1=4.139 4C−0.829 8 (0.4<C<1.0), Y1=18.631 2C−15.410 0 (1.0<C<1.1)
    谱加速度(Y2)Y2=221.35C−55.069 (0.4<C<1.0), Y2=502.28C−341.02 (1.0<C<1.1)
    下载: 导出CSV
  • [1] 周其新. 舰载设备冲击动力学数值实验技术体系研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
    [2] 宫国田, 金辉, 张姝红, 等. 国外舰艇抗水下爆炸研究综述 [C] // 第九届全国冲击动力学学术会议. 河南焦作, 2009.
    [3] 王军. 浮动冲击平台冲击动力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
    [4] KEIL A H. The response of ships to underwater explosions [J]. Transactions-Society of Naval Architects and Marine Engineers, 2010, 69: 43.
    [5] KLASEBOER E, KHOO B C, HUNG K C. Dynamics of an oscillating bubble near a floating structure [J]. Journal of Fluids and Structures, 2005, 21(4): 395–412. DOI: 10.1016/j.jfluidstructs.2005.08.006.
    [6] ZHANG A M, ZENG L Y, CHENG X D, et al. The evaluation method of total damage to ship in underwater explosion [J]. Applied Ocean Research, 2011, 33(4): 240–251. DOI: 10.1016/j.apor.2011.06.002.
    [7] ZHANG N, ZONG Z. The effect of rigid-body motions on the whipping response of a ship hull subjected to an underwater bubble [J]. Journal of Fluids & Structures, 2011, 27(8): 1326–1336.
    [8] 沈国光, 李德筠, 李润珊, 等. 大当量爆炸兴波的数值模拟 [J]. 海洋学报, 1996, 18(5): 128–133.

    SHEN Guoguang, LI Deyun, LI Runshan. Numerical simulation of large equivalent detonation wave [J]. Acta Oceanica Sinica, 1996, 18(5): 128–133.
    [9] 李汪讳, 宗智, 孙雷. 水下爆炸兴波及其对结构物作用问题的数值模拟 [J]. 水动力学研究与进展: A辑, 2010, 25(6): 792–805.

    LI Wanghui, ZONG Zhi, SUN Lei. Numerical simulation of underwater explosion and wave propagation and its effect on structures [J]. Journal of Hydrodynamics: A, 2010, 25(6): 792–805.
    [10] WANG Q. The bursting of an underwater explosion bubble at a free surface [J]. Ocean Engineering, 2015, 109: 611–622. DOI: 10.1016/j.oceaneng.2015.09.017.
    [11] 王军, 郭君, 姚熊亮. 冲击波作用下浮动冲击平台的刚体响应分析 [J]. 华中科技大学学报(自然科学版), 2015(2): 71–75.

    WANG Jun, GUO Jun, YAO Xiongliang. Rigid body response analysis of a floating shock platform under shock wave [J]. Journal of Huazhong University of Science and Technology, 2015(2): 71–75.
    [12] 郑长允, 赵鹏远, 赵红光, 等. 设备缓冲平台在水下爆炸载荷作用下冲击响应分析 [J]. 科技导报, 2012, 30(18): 37–40. DOI: 10.3981/j.issn.1000-7857.2012.18.004.

    ZHENG Changyun, ZHAO Pengyuan, ZHAO Hongguang, et al. Shock response analysis of equipment buffer platform under underwater explosion loading [J]. Science & Technology Review, 2012, 30(18): 37–40. DOI: 10.3981/j.issn.1000-7857.2012.18.004.
    [13] CUI P, ZHANG A M, WANG S P. Small-charge underwater explosion bubble experiments under various boundary conditions [J]. Physics of Fluids, 2016, 28(11): 283.
    [14] 王军, 姚熊亮, 杨棣. 浮动冲击平台冲击环境对设备响应的影响 [J]. 爆炸与冲击, 2015, 35(2): 236–242. DOI: 10.11883/1001-1455(2015)02-0236-07.

    WANG Jun, YAO Xiongliang, YANG Di. Shock of shock platform on the response of equipment to [J]. Explosion and Shock Waves, 2015, 35(2): 236–242. DOI: 10.11883/1001-1455(2015)02-0236-07.
  • 加载中
推荐阅读
Influence of miniature temperature-depth recorder (tdr-2050) on hook depth of tuna longline fishing hooks
SONG Liming et al., SOUTH CHINA FISHERIES SCIENCE, 2025
Study on main catch composition and fishing ground change of light purse seine in northwest pacific
ZHAO Guoqing et al., SOUTH CHINA FISHERIES SCIENCE, 2022
Modeling habitat of skipjack tuna of free swimming school in western and central pacific ocean based on maxent model
WANG Weisong et al., SOUTH CHINA FISHERIES SCIENCE, 2023
Effects of acidification stress on antioxidant and immunity in juvenile yellowfin tuna (thunnus albacares)
WANG Xiaoyan et al., SOUTH CHINA FISHERIES SCIENCE, 2024
Distribution and early growth characteristics of anchovy eggs, larvae and juveniles in the central yellow sea in summer
LIU Hao et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2024
Analysis and evaluation of the muscle nutrition of different sizes of wild yellowfin tuna (thunnus albacares)
LIU Longlong et al., PROGRESS IN FISHERY SCIENCES, 2024
Using structural equation modeling to investigate the influence of environmental factors on the cpue of skipjack tuna (katsuwonus pelamis) pair trawl fishery in mauritania
ZHANG Honglin et al., JOURNAL OF FISHERY SCIENCES OF CHINA, 2024
Soliton molecules, interaction and other wave solutions of the new (3+1)-dimensional integrable fourth-order equation for shallow water waves
Wang, Kang-Jia et al., PHYSICA SCRIPTA, 2024
Variation of sediment grain size parameters, fish diversity, and phytoplankton richness in relation to sand and silt fractions in estuaries
GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
Comparison of cytotoxicity effects of propionic acid compounds to thle-2 and hep-g2 cells
INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2024
Powered by
图(15) / 表(2)
计量
  • 文章访问数:  6116
  • HTML全文浏览量:  1542
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-19
  • 修回日期:  2019-03-11
  • 网络出版日期:  2019-08-25
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回