Study on JH-2 model of the ZrCuNiAlAg bulk amorphous alloy
-
摘要: 为了更好的进行ZrCuNiAlAg块体非晶合金药型罩的爆炸成形及侵彻仿真研究,首要就是建立其材料模型。本文结合ZrCuNiAlAg块体非晶合金力学性能试验结果计算得到了材料的JH-2模型参数,研究确定了ZrCuNiAlAg块体非晶合金JH-2模型。为了验证ZrCuNiAlAg块体非晶合金JH-2模型的准确性,采用Autodyn建立了平板撞击试验有限元模型,模拟了ZrCuNiAlAg块体非晶合金材料在高压、高应变率等环境条件下的变形过程,仿真计算得到的靶板背面自由面粒子速度与试验结果相比,速度平均偏差均在3%以内,表明ZrCuNiAlAg块体非晶合金JH-2模型能很好的描述该材料在大变形、高应变率、高压等环境条件下的力学行为,验证了ZrCuNiAlAg块体非晶合金JH-2模型准确性。
-
关键词:
- ZrCuNiAlAg块体非晶合金 /
- JH-2模型 /
- Autodyn /
- 有限元
Abstract: It is very important to establish the material model for the explosive forming and penetration simulation of ZrCuNiAlAg bulk amorphous alloy. In this paper, the JH-2 model parameters of the ZrCuNiAlAg bulk amorphous alloy were calculated by the experimental results. In order to verify the accuracy of the ZrCuNiAlAg bulk amorphous alloy JH-2 model, the finite element model of plate impact test was established by Autodyn. The deformation process of ZrCuNiAlAg bulk amorphous alloy under high pressure and high strain rate was simulated. Compared with the experimental results, the average velocity deviation of the free surface particles on the back surface of the target plate is less than 3%. It is shown that the JH-2 model of ZrCuNiAlAg bulk amorphous alloy can well describe the mechanical behavior of the material under large deformation, high strain rate, high pressure and other environmental conditions, and the accuracy of JH-2 model of ZrCuNiAlAg bulk amorphous alloy is verified.-
Key words:
- ZrCuNiAlAg bulk amorphous alloy /
- JH-2 model /
- Autodyn /
- finite element
-
表 1 SHPB试验结果
Table 1. SHPB test results
气压/MPa 应变率/s−1 原始尺寸/mm 整形片整形片尺寸/mm 压缩强度/GPa 0.17 600 3.84×3.61 10×10×0.25 1.06 0.22 2214 3.81×3.64 10×10×0.25 1.25 0.30 2783 3.85×3.61 10×10×0.25 1.46 0.35 3129 3.82×3.63 10×10×0.25 1.59 表 2 压缩力学性能试验结果
Table 2. Test results of compressive mechanical properties
试验编号 $\dot \varepsilon $/s−1 σ/GPa p/GPa σ* p* CMT#1 4×10−2 1.23 0.407 0.211 0.071 CMT#2 4×10−2 1.24 0.409 0.213 0.072 CMT#3 4×10−2 1.24 0.416 0.213 0.072 SHPB#1 2 214 1.25 0.418 0.215 0.073 SHPB#2 2 783 1.46 0.489 0.251 0.086 SHPB#3 3 129 1.59 0.529 0.273 0.093 SHPB#4 3 132 1.64 0.571 0.282 0.100 表 3 块体非晶合金碎片准静态压缩试验结果
Table 3. Quasi-static compression test results for bulk amorphous alloy fragments
试验编号 $\dot \varepsilon $/s−1 σ/GPa p/GPa σ* p* 1 1×10−2 1.26 0.42 0.216 0.074 2 2×10−2 1.41 0.43 0.242 0.075 表 4 ZrCuNiAlAg块体非晶合金材料模型参数
Table 4. Material model parameters
ρ/(g·cm−3) A1/kPa A2/kPa A3/kPa D1 N C 6.581 2.303×109 4.716×1010 8.873×1011 0.005 1.153 0.094 T1/kPa A B σHEL/kPa D2 M G/kPa 2.303×109 0.296 1.03 5.82×106 1 0.383 3.704×106 表 5 计算与试验结果对比
Table 5. Comparisons between calculated results and experimental results
试验编号 试验速度/(m·s−1) 计算速度/(m·s−1) 误差/% 1 350 340 2.9 2 390 379 2.8 3 439 427 2.7 4 502 489 2.6 5 550 535 2.7 -
[1] INOUE A, TAKEUCHI A. Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys [J]. Materials Science & Engineering A, 2004, 43(8): 16–30. DOI: 10.1016/j.msea.2003.10.159. [2] SHENG H W, LUO W K, ALAMGIR F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439(7075): 419–425. DOI: 10.1038/nature04421. [3] MIRACLE D B. A structural model for metallic glasses [J]. Nature Materials, 2004, 3(10): 692–702. DOI: 10.1038/nmat1205. [4] LI Yaoqi, SONG Min, HE Yuehui. Effect of quenching mode on the mechanical properties of a Zr64Al10Ni15Cu11 metallic glass [J]. Materials and Design, 2010, 31(7): 3555–3558. DOI: 10.1016/j.matdes.2010.01.040. [5] 仇在宏, 杨元政, 赵德强, 等. 锆基块体非晶合金的力学性能研究进展 [J]. 金属功能材料, 2004, 11(5): 25–27. DOI: 10.3969/j.issn.1005-8192.2004.05.008.QIU Zaihong, YANG Yuanzheng, ZHAO Deqiang, et al. Progress in mechanical properties of Zr-based bulk amorphous alloys [J]. Metallic Functional Materials, 2004, 11(5): 25–27. DOI: 10.3969/j.issn.1005-8192.2004.05.008. [6] INOUE A, YOKOYAMA Y, SHINOHARA Y, et al. Preparation of bulk Zr-base amorphous alloy by a zone melting method [J]. Mater Trans, JIM, 1994, 35(2): 923–926. DOI: 10.2320/matertrans1989.35.923. [7] 蒋维科. Zr基块体非晶合金的制备及力学性能研究[D]. 兰州: 兰州理工大学, 2013. [8] 寇生中, 黄文军, 郑宝超, 等. Y元素添加对Zr基非晶形成和力学性能的影响 [J]. 铸造工程, 2010, 31(11): 1430–1431.KOU Shengzhong, HUANG Wenjun, ZHEN Baochao, et al. Glass forming ability and mechanical property of Zr-based alloy with the addition of yttrium [J]. Foundry Technology, 2010, 31(11): 1430–1431. [9] 武晓峰, 张海峰, 李宏, 等. Zr基大块非晶合金的微区变形及力学性能 [J]. 中国有色金属学报, 2003, 13(6): 1368–1371. DOI: 10.3321/j.issn:1004-0609.2003.06.008.WU Xiaofeng, ZHANG Haifeng, LI Hong, et al. Deformation and mechanical properties of Zr-based bulk metallic glasses under nanoindenter [J]. The Chinese Journal of Nonferrous Metals, 2003, 13(6): 1368–1371. DOI: 10.3321/j.issn:1004-0609.2003.06.008. [10] MAO J, ZHANG H F, HUA M F, et al. Effects of casting temperature on mechanical properties of Zr-based metallic glasses [J]. Materials Science and Engineering, 2010, A527: 981–985. DOI: 10.1016/j.msea.2009.09.040. [11] 邢秋玮. 锆基非晶合金力学性能影响因素的研究[D]. 兰州: 兰州理工大学, 2013. DOI: 10.7666/d.Y2445918. [12] 李杳奇. Zr基块体非晶合金压缩力学性能的研究[D]. 长沙: 中南大学, 2011. DOI: 10.7666/d.y1915234. [13] MA G, ZHU Z, WANG Z, et al. Deformation behavior of the Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass over a wide range of strain rate and temperatures [J]. Journal of Materials Science & Technology, 2015, 31(9): 941–945. DOI: 10.1016/j.jmst.2015.06.001. [14] WANG Weihua, WEI Ping, WANG Limin, et al. Equation of state of bulk metallic glasses studied by an ultrasonic method [J]. Applied Physics Letters, 2001, 79(24): 3947–3949. DOI: 10.1063/1.1426272. [15] PAN M X, WANG W H, ZHAO D Q, et al. The equation of state and potential function of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass [J]. Journal of Physics: Condensed Matter, 2002(14): 5665–5671. DOI: 10.1088/0953-8984/14/23/302. [16] 潘念侨. Zr基非晶合金材料动态本构关系及其释能效应研究[D]. 南京: 南京理工大学: 2016. [17] 石永相, 施冬梅. ZrCuNiAlAg块体非晶合金动静态力学性能研究 [J]. 热加工工艺, 2019, 48(6): 83–86. DOI: 10.14158/j.cnki.1001-3814.2019.06.020.SHI Yongxiang, SHI Dongmei. Study on dynamic and static mechanical properties of ZrCuNiAlAg bulk amorphous alloy [J]. Hot Working Technology, 2019, 48(6): 83–86. DOI: 10.14158/j.cnki.1001-3814.2019.06.020. [18] 罗兴柏, 张玉令, 丁玉葵.爆炸力学理论教程[M]. 北京:国防工业出版社, 2016: 210. [19] 杨震琦, 庞宝君, 王立闻, 等. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击, 2010, 30(5): 464–468. DOI: 10.11883/1001-1455(2010)05-0463-09.YANG Zhenqi, PANG Baojun, WANG Liwen, et al. JH-2 model and its application to numericals imulation on Al2O3 ceramic under low-velocity impact [J]. Explosion and Shock Waves, 2010, 30(5): 464–468. DOI: 10.11883/1001-1455(2010)05-0463-09.