开口阻塞比对粉体抑制甲烷爆炸的影响研究

郑立刚 李刚 王亚磊 朱小超 窦增果 杜德朋 余明高

郑立刚, 李刚, 王亚磊, 朱小超, 窦增果, 杜德朋, 余明高. 开口阻塞比对粉体抑制甲烷爆炸的影响研究[J]. 爆炸与冲击, 2019, 39(11): 115403. doi: 10.11883/bzycj-2018-0228
引用本文: 郑立刚, 李刚, 王亚磊, 朱小超, 窦增果, 杜德朋, 余明高. 开口阻塞比对粉体抑制甲烷爆炸的影响研究[J]. 爆炸与冲击, 2019, 39(11): 115403. doi: 10.11883/bzycj-2018-0228
ZHENG Ligang, LI Gang, WANG Yalei, ZHU Xiaochao, Dou Zengguo, DU Depeng, YU Minggao. Effect of blockage ratios on the characteristics of methane/air explosions suppressed by dry chemicals[J]. Explosion And Shock Waves, 2019, 39(11): 115403. doi: 10.11883/bzycj-2018-0228
Citation: ZHENG Ligang, LI Gang, WANG Yalei, ZHU Xiaochao, Dou Zengguo, DU Depeng, YU Minggao. Effect of blockage ratios on the characteristics of methane/air explosions suppressed by dry chemicals[J]. Explosion And Shock Waves, 2019, 39(11): 115403. doi: 10.11883/bzycj-2018-0228

开口阻塞比对粉体抑制甲烷爆炸的影响研究

doi: 10.11883/bzycj-2018-0228
基金项目: 国家自然科学基金(51674104,51874120);中国博士后科学基金(2013M540570);河南理工大学创新型科研团队(T2018-2)
详细信息
    作者简介:

    郑立刚(1979- ),男,博士,教授,zhengligang97@163.com

    通讯作者:

    余明高(1963- ),男,博士,教授,博士生导师,mg_yu@126.com

  • 中图分类号: O389

Effect of blockage ratios on the characteristics of methane/air explosions suppressed by dry chemicals

  • 摘要: 为了研究开口阻塞比φ对粉体抑爆特性的影响,采用质量浓度C为0、80、160、240 g/m3的Al (OH)3和NaHCO3粉体,分别抑制具有不同φ(0、0.2、0.4、0.6、0.7、1.0)值的5 L管道内甲烷/空气预混气爆炸。实验结果表明:火焰的破碎度随粉体抑爆效率的增大而增大;最大超压峰值pmax、爆燃指数Kst由燃烧速率和泄爆速率共同决定。φ=0.7是每条爆炸特征参数曲线的拐点。随着φ值增加,超压峰值下降率δ先增大后减小,在0.4和0.6之间达到最大;总体上,Al (OH)3和NaHCO3两种粉体的抑爆效率相近。但在某些阻塞比下,阻塞比引起的低湍流影响着粉体颗粒的沉降行为,使得Al (OH)3抑爆效率优于NaHCO3。当粉体质量浓度从80 g/m3增加到240 g/m3时,热阻增加,火焰的热量不能扩散到粒子云的中心,不利于内部粒子的吸热分解,致使浓度效应越来越弱。
  • 图  1  实验系统示意

    Figure  1.  Schematic diagram of experimental system

    图  2  样品的粒度分布

    Figure  2.  Particle size distributions of samples

    图  3  不同工况的火焰结构

    Figure  3.  Comparison of flame structures with different experimental conditions

    图  4  四种开口阻塞比下的火焰传播速度

    Figure  4.  The flame tip velocity under four blockage ratios with different powder concentrations

    图  5  NaHCO3质量浓度C=0 g/m3时封闭端爆炸参数

    Figure  5.  The explosion parameters at the lower end with C=0 g/m3

    图  6  NaHCO3抑制时封闭端超压峰值及最大升压速率

    Figure  6.  The pmax and (dp/dt)max at the lower end with NaHCO3

    图  7  封闭端超压峰值下降率

    Figure  7.  The drop rate of pmax at the lower end as a function of the blockage ratio

    图  8  NaHCO3与Al(OH)3粉体抑爆机理示意

    Figure  8.  Mechanism illustration of the methane explosion suppression by NaHCO3 and Al(OH)3 powders

    表  1  不同工况下超压峰值下降率增值的比较

    Table  1.   Comparison of the increment in the drop rate of pmax with different experimental conditions

    粉体φ(δ|C=160δ|C=80)/%(δ|C=240δ|C=160)/%
    NaHCO30 9.4 3.5
    0.212.3 7.3
    0.415.7 2.1
    0.613.911.2
    0.718.313.9
    1.0 3.7 2.7
    Al(OH)30 5.1 9.5
    0.210.116.8
    0.416.2 1.1
    0.6 9.6 3.1
    0.712.1 8.7
    1.0 3.5 1.3
    下载: 导出CSV
  • [1] 余明高, 杨勇, 裴蓓, 等. N2双流体细水雾抑制管道瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.

    YU Minggao, YANG Yong, PEI Bei, et al. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist [J]. Explosion and Shock Waves, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.
    [2] 张培理, 杜扬. 油气爆炸的氮气非预混抑制实验 [J]. 爆炸与冲击, 2016, 36(3): 347–352. DOI: 10.11883/1001-1455(2016)03-0347-06.

    ZHANG Peili, DU Yang. Experiments of nitrogen non-premixed suppression of gasoline-air mixture explosion [J]. Explosion and Shock Waves, 2016, 36(3): 347–352. DOI: 10.11883/1001-1455(2016)03-0347-06.
    [3] JIANG H, BI M, GAO W, et al. Inhibition of aluminum dust explosion by NaHCO3 with different particle size distributions [J]. Journal of Hazardous Materials, 2017, 344: 902–912. DOI: 10.1016/j.jhazmat.2017.11.054.
    [4] 范宝春, 李鸿志. 惰性颗粒抑爆过程的数值模拟 [J]. 爆炸与冲击, 2000, 20(3): 208–214.

    FAN Baochun, LI Hongzhi. Numerical simulations of explosion suppression by inert particles [J]. Explosion and Shock Waves, 2000, 20(3): 208–214.
    [5] 文虎, 王秋红, 邓军, 等. 超细Al(OH)3粉体浓度对甲烷爆炸压力的影响 [J]. 煤炭学报, 2009(11): 1479–1482. DOI: 10.3321/j.issn:0253-9993.2009.11.009.

    WEN Hu, WANG Qiuhong, DENG Jun, et al. Effect of the concentration of Al(OH)3 ultrafine powder on the pressure of methane explosion [J]. Journal of China Coal Society, 2009(11): 1479–1482. DOI: 10.3321/j.issn:0253-9993.2009.11.009.
    [6] ZHENG L G, ZHENG K, PAN R K, et al. Inhibition of the premixed CH4/air deflagration by powdered extinguishing agents [J]. Procedia Engineering, 2014, 71: 230–237. DOI: 10.1016/j.proeng.2014.04.033.
    [7] 喻健良, 闫兴清. 硅酸铝棉对火焰速度和爆炸超压的抑制作用 [J]. 爆炸与冲击, 2013, 33(4): 363–368. DOI: 10.11883/1001-1455(2013)04-0363-06.

    YU Jianliang, YAN Xingqing. Suppression of flame speed and explosion overpressure by aluminum silicate wool [J]. Explosion and Shock Waves, 2013, 33(4): 363–368. DOI: 10.11883/1001-1455(2013)04-0363-06.
    [8] 周佩杰, 王坚, 陶钢, 等. 泡沫材料对冲击波的衰减特性 [J]. 爆炸与冲击, 2015, 35(5): 675–681. DOI: 10.11883/1001-1455(2015)05-0675-07.

    ZHOU Peijie, WANG Jian, TAO Gang, et al. Attenuation characteristics of shock waves interacting with open and closed foams [J]. Explosion and Shock Waves, 2015, 35(5): 675–681. DOI: 10.11883/1001-1455(2015)05-0675-07.
    [9] 邵昊, 蒋曙光, 李钦华, 等. 真空腔体积对真空腔抑制瓦斯爆炸性能的影响 [J]. 采矿与安全工程学报, 2014, 31(3): 489–493. DOI: 10.13545/j.issn1673-3363.2014.03.025.

    SHAO Hao, JIANG Shugang, LI Qinhua, et al. Influence of vacuum chamber volume on gas explosion suppression [J]. Journal of Mining and Safety Engineering, 2014, 31(3): 489–493. DOI: 10.13545/j.issn1673-3363.2014.03.025.
    [10] 胡俊, 浦以康, 万士昕, 等. 柱形容器开口泄爆过程中压力发展特性的实验研究 [J]. 爆炸与冲击, 2001, 21(1): 47–52.

    HU Jun, PU Yikang, WAN Shixin, et al. Experimental investigations of pressure development during explosion vent from cylindrical vessels [J]. Explosion and Shock Waves, 2001, 21(1): 47–52.
    [11] 任少峰, 陈先锋, 王玉杰, 等. 泄压口比率对气体泄爆过程中的动力学行为的影响 [J]. 煤炭学报, 2011, 36(5): 830–833. DOI: 10.13225/j.cnki.jccs.2011.05.033.

    REN Shaofeng, CHEN Xianfeng, WANG Yujie, et al. Effect of pressure-orifice ratio on dynamic behavior during gas venting [J]. Journal of China Coal Society, 2011, 36(5): 830–833. DOI: 10.13225/j.cnki.jccs.2011.05.033.
    [12] 尤明伟, 蒋军成, 喻源, 等. 等泄压比条件下连通容器泄爆实验研究 [J]. 爆炸与冲击, 2012, 32(2): 221–224. DOI: 10.11883/1001-1455(2012)02-0221-04.

    YOU Mingwei, JIANG Juncheng, YU Yuan, et al. Experimental study on premixed flammable gas explosion venting in linked vessels under the same effective vent area [J]. Explosion and Shock Waves, 2012, 32(2): 221–224. DOI: 10.11883/1001-1455(2012)02-0221-04.
    [13] 陈东梁, 孙金华, 刘义, 等. 甲烷/空气预混气体火焰的传播特征 [J]. 爆炸与冲击, 2008, 28(5): 385–390. DOI: 10.11883/1001-1455(2008)05-0385-06.

    CHEN Dongliang, SUN Jinhua, LIU Yi, et al. Propagation characteristics of premixed methane-air flames [J]. Explosion and Shock Waves, 2008, 28(5): 385–390. DOI: 10.11883/1001-1455(2008)05-0385-06.
    [14] XIAO H, WANG Q, HE X, et al. Experimental study on the behaviors and shape changes of premixed hydrogen–air flames propagating in horizontal duct [J]. International Journal of Hydrogen Energy, 2011, 36(10): 6325–6336. DOI: 10.1016/j.ijhydene.2011.02.049.
    [15] CLANET C, SEARBY G. On the " tulip flame” phenomenon [J]. Combustion and Flame, 1996, 105(1/2): 225–238. DOI: 0010-2180(95)00195-6.
    [16] LV X, ZHENG L, ZHANG Y, et al. Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen–air explosion [J]. International Journal of Hydrogen Energy, 2016, 41(39): 17740–17749. DOI: 10.1016/j.ijhydene.2016.07.263.
    [17] CASTELLANOS D, CARRETO-VAZQUEZ V H, MASHUGA C V, et al. The effect of particle size polydispersity on the explosibility characteristics of aluminum dust [J]. Powder Technology, 2014, 254(2): 331–337. DOI: 10.1016/j.powtec.2013.11.028.
    [18] HUANG D, WANG X, YANG J. Influence of particle size and heating rate on decomposition of BC dry chemical fire extinguishing powders [J]. Particulate Science and Technology, 2015, 33(5): 488–493. DOI: 10.1080/02726351.2015.1013591.
    [19] 王秋红, 邓军, 罗振敏, 等. 超细氢氧化镁粉体抑制甲烷-空气混合物爆炸效能研究 [J]. 中国安全科学学报, 2014, 24(12): 33–37. DOI: 10.16265/j.cnki.issn1003-3033.2014.12.006.

    WANG Qiuhong, DENG Jun, LUO Zhenmin, et al. Research on effects of methane explosion suppression by ultrafine magnesium hydroxide powder [J]. China Safety Science Journal, 2014, 24(12): 33–37. DOI: 10.16265/j.cnki.issn1003-3033.2014.12.006.
    [20] OMAR Dounia, OLIVIER Vermorel, THIERRY Poinsot. Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles [J]. Combustion & Flame, 2018, 193: 313–326. DOI: 10.1016/j.combustflame.2018.03.033.
    [21] RALLIS C J, GARFORTH A M. The determination of laminar burning velocity [J]. Progress in Energy and Combustion Science, 1980, 6(4): 303–329. DOI: 10.1016/0360-1285(80)90008-8.
    [22] 徐跃萍, 郭景坤, 黄校先, 等. 无团聚ZrO2-Y2O3陶瓷超细粉的制备及微观结构表征 [J]. 硅酸盐学报, 1991(3): 269–273. DOI: 10.3321/j.issn:0454-5648.1991.03.001.

    XU Yueping, GUO Jingkun, HUANG Xiaoxian, et al. Preparation and microstructure characteristics of free-agglomerate ultrafine ZrO2-Y2O3 ceramic powder [J]. Journal of the Chinese Ceramic Society, 1991(3): 269–273. DOI: 10.3321/j.issn:0454-5648.1991.03.001.
    [23] 冯拉俊, 刘毅辉, 雷阿利. 纳米颗粒团聚的控制 [J]. 微纳电子技术, 2003, 40(7): 536–539. DOI: 10.3969/j.issn.1671-4776.2003.07.158.

    FENG Lajun, LIU Yihui, LEI Ali. The controlling of nanoparticle agglomerates [J]. Micronanoelectronic Technology, 2003, 40(7): 536–539. DOI: 10.3969/j.issn.1671-4776.2003.07.158.
    [24] ECKHOFF R K. Influence of dispersibility and coagulation on the dust explosion risk presented by powders consisting of nm-particles [J]. Powder Technology, 2013, 239(17): 223–230. DOI: 10.1016/j.powtec.2013.02.007.
    [25] 李国栋, 熊翔, 黄伯云. 纳米粉体大气环境团聚机理及无团聚纳米粉体的制备 [J]. 中南大学学报(自然科学版), 2004, 35(4): 527–531. DOI: 10.3969/j.issn.1672-7207.2004.04.002.

    LI Guodong, XIONG Xiang, HUANG Boyun. Agglomerate mechanism of nanometer powders in atmosphere and methods of preparation of nan-agglomerate nanometer powders [J]. Journal of Central South University (Science and Technology), 2004, 35(4): 527–531. DOI: 10.3969/j.issn.1672-7207.2004.04.002.
    [26] RANGANATHAN S, ROCKWELL S R, PETROW D, et al. Radiative fraction of dust entrained turbulent premixed flames [J]. Journal of Loss Prevention in the Process Industries, 2017, 51: 65–71. DOI: 10.1016/j.jlp.2017.11.009.
    [27] RANGANATHAN S, PETROW D, ROCKWELL S R, et al. Turbulent burning velocity of methane–air–dust premixed flames [J]. Combustion and Flame, 2018, 188: 367–375. DOI: 10.1016/j.combustflame.2017.10.015.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  5237
  • HTML全文浏览量:  1448
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-26
  • 修回日期:  2018-08-22
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回