Model experiments on penetration of layered geological material targets by hypervelocity rob projectiles
-
摘要: 利用二级轻气炮开展了杆形钢弹在10马赫左右条件下对4种分层地质类材料靶体的超高速侵彻模型实验,重点研究了砂浆层位置和空气隔层对侵彻效应的影响。结果表明增加遮弹层与下部结构间的空气隔层、在整个结构顶部设置疏松砂浆层均可以在一定条件下加剧弹体破坏、减小结构层的侵彻深度,但同时会增加遮弹层的表面成坑效应。从减小结构层的侵彻深度出发,“软-硬-软-硬”的分层设计思路对抵抗超高速弹体侵彻是可行的。Abstract: Model experiments of hypervelocity penetration of steel rods at about Mach 10 into four types of layered geological material targets were conducted with a two-stage light gas gun, and the effects of the mortar position and the air-layer set on penetration were emphasized. The results show that, under certain conditions, both adding an air layer between the shielding layer and the lower structure layer and setting a mortar layer at the upper surface of the whole structure can promote the projectiles broken, decrease the penetration depth into the structural layer, but in the mean time intensify the cratering effect of the shielding layer. For reducing the penetration depth of the structural layer, the soft-hard-soft-hard layering set is feasible to optimize the anti-penetration performance against hypervelocity projectiles, in which the first soft layer is the surface layer made of porous materials with low sound impedance, the first hard layer is the shielding layer made of materials with high strength and hardness, and the second soft layer is the distribution layer and the second hard layer is the structural layer.
-
表 1 弹靶材料的基本材料参数
Table 1. Basic parameters of materials of projectile and target
材料 密度/
(kg·m−3)单轴抗压强度/
MPa硬度 纵波声速/
(m·s−1)30CrMnSi2A 7 850 1 920 HRC50 花岗岩 2 650 89.0 4 672 砂浆 1 850 3.84 2 439 混凝土 2 202 17.9 3 509 表 2 成坑几何特征参数的量测结果
Table 2. Measurements of geometrical character of craters
实验方案 撞击速度/(m·s−1) D1f/mm D1b/mm D1p/mm h1s/mm Df/mm Dc/mm hc/mm A 3 486.5 170~220 166~192 77~83 26 30 55.7 B 3 447.9 202~268 185~216 76~81 28 17 23.9 C 3 432.7 165~202 49 57.6 D 3 440.3 178~221 52 48.1 -
[1] 杨秀敏, 邓国强. 常规钻地武器破坏效应的研究现状和发展 [J]. 后勤工程学院学报, 2016, 32(5): 1–9. DOI: 10.3969/j.issn.1672-7843.2016.05.001.YANG Xiumin, DENG Guoqiang. The research status and development of damage effect of conventional earth penetration weapon [J]. Journal of Logistical Engineering University, 2016, 32(5): 1–9. DOI: 10.3969/j.issn.1672-7843.2016.05.001. [2] ANTOUN T, GLENN L, WALTON O, et al. Simulation of hypervelocity penetration in limestone [J]. International Journal of Impact Engineering, 2005, 33(1): 45–52. DOI: 10.1016/j.ijimpeng.2006.09.009. [3] WÜNNEMANN K, COLLINS G S, MELOSH H J. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets [J]. Icarus, 2006, 180(1): 514–527. DOI: 10.1016/j.icarus.2005.10.013. [4] 邓国强, 杨秀敏. 超高速武器打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.DENG Guoqiang, YANG Xiumin. Numerical simulation of damage effect of hypervelocity weapon on ground target [J]. Science and Technology Review, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010. [5] 邓国强, 杨秀敏. 抗超高速武器最小安全防护层厚度计算 [J]. 防护工程, 2016, 38(1): 39–42.DENG Guoqiang, YANG Xiumin. Estimation method of safety protective layer depth resisting hypervelocity weapon impact [J]. Protective Engineering, 2016, 38(1): 39–42. [6] 邓国强, 杨秀敏. 超高速武器流体侵彻与装药浅埋爆炸效应的等效方法 [J]. 防护工程, 2015, 37(6): 27–32.DENG Guoqiang, YANG Xiumin. Effect equivalent method between fluid penetration of hypervelocity weapon and shallow detonation of explosive [J]. Protective Engineering, 2015, 37(6): 27–32. [7] DAWSON A, BLESS S, LEVINSON S, et al. Hypervelocity penetration of concrete [J]. International Journal of Impact Engineering, 2008, 35(1): 1484–1489. DOI: 10.1016/j.ijimpeng.2008.07.069. [8] 牛雯霞, 黄洁, 柯发伟, 等. 混凝土房屋结构靶的超高速撞击特性研究 [J]. 实验流体力学, 2014, 28(2): 79–84. DOI: 10.11729/syltlx2014pz38.NIU Wenxia, HUANG Jie, KE Fawei, et al. Research on hypervelocity impact characteristics of concrete building structures target [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 79–84. DOI: 10.11729/syltlx2014pz38. [9] 王鹏, 郭磊, 余道建, 等. 动能棒超高速对混凝土靶板撞击毁伤效应研究 [C] // 第一届全国超高速碰撞会议论文集. 四川绵阳: 中国空气动力研究与发展中心, 2013: 145−150. [10] 钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [C] // 第十一届全国爆炸力学学术会议论文集. 珠海, 广东: 中国力学学会爆炸力学专业委员会, 2016. [11] CHENG Y H, WANG M Y, SHI C C, et al. Constraining damage size and crater depth: a physical model of transient crater formation in rocky targets [J]. International Journal of Impact Engineering, 2015, 81(6): 50–60. DOI: 10.1016/j.ijimpeng.2015.03.009. [12] SHI C C, WANG M Y, ZHANG K L, et al. Semi-analytical model for rigid and erosive long rods penetration into sand with consideration of compressibility [J]. International Journal of Impact Engineering, 2015, 83(1): 1–10. DOI: 10.1016/j.ijimpeng.2015.04.007. [13] 李卧东, 王明洋, 施存程, 等. 地质类材料超高速撞击相似关系与实验研究综述 [J]. 防护工程, 2015, 37(2): 55–62.LI Wodong, WANG Mingyang, SHI Cuncheng, et al. Review of similarity laws and scaling experiments research of hypervelocity impact on geological material targets [J]. Protective Engineering, 2015, 37(2): 55–62. [14] 王明洋, 邱艳宇, 李杰, 等. 超高速长杆弹对岩石侵彻、地冲击效应理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(3): 564–572. DOI: 10.13722/j.cnki.jrme.2017.1348.WANG Mingyang, QIU Yanyu, LI Jie. Theoretical and experimental study on rock penetration and ground impact effects of hypervelocity long rod projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 564–572. DOI: 10.13722/j.cnki.jrme.2017.1348. [15] 宋春明, 李干, 王明洋, 等. 不同速度段弹体侵彻岩石靶体的理论分析 [J]. 爆炸与冲击, 2018, 38(2): 250–257. DOI: 10.11883/bzycj-2017-0198.SONG Chunming, LI Gan, WANG Mingyang, et al. Theoretical analysis of projectile penetrating into rock targets at different velocities [J]. Explosion and Shock Waves, 2018, 38(2): 250–257. DOI: 10.11883/bzycj-2017-0198. [16] 李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.LI Gan, SONG Chunming, QIU Yanyu, et al. Theoretical and experimental studies on the phenomenon of penetration depth reverse reduction in the penetration of granite by hyper-velocity projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584. [17] 张自强. 装甲防护技术基础 [M]. 北京: 兵器工业出版社, 2000: 140−144. [18] 张庆明, 黄风雷. 超高速碰撞动力学引论 [M]. 北京: 科学出版社, 2000: 121−136. [19] 刘峥, 程怡豪, 邱艳宇, 等. 成层式防护结构抗超高速侵彻的数值分析 [J]. 爆炸与冲击, 2018, 38(6): 1317–1324. DOI: 10.11883/bzycj-2017-0181.LIU Zheng, CHENG Yihao, QIU Yanyu, et al. Numerical analysis on hypervelocity penetration into layered protective structure [J]. Explosion and Shock Waves, 2018, 38(6): 1317–1324. DOI: 10.11883/bzycj-2017-0181. [20] ORPHAL D L, ANDERSON C E. The dependence of penetration velocity on impact velocity [J]. International Journal of Impact Engineering, 2006, 33(1): 546–554. DOI: 10.1016/j.ijimpeng.2006.09.054. [21] WU H, FANG Q, PENG Y, et al. Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner [J]. International Journal of Impact Engineering, 2015, 76(1): 232–250. DOI: 10.1016/j.ijimpeng.2014.10.010. [22] 高光发, 李永池, 李平, 等. 防护工程复合遮弹层结构探讨 [J]. 弹箭与制导学报, 2011, 31(5): 99–101. DOI: 10.3969/j.issn.1673-9728.2011.05.029.GAO Guangfa, LI Yongchi, LI Ping, et al. The research on composite structure of shielding cover in protective engineering [J]. Journal of projectiles, Rockets, Missiles and Guidance, 2011, 31(5): 99–101. DOI: 10.3969/j.issn.1673-9728.2011.05.029. [23] 颜海春, 方秦, 陈力. 遮弹层震塌碎块对成层式结构顶板的冲击破坏效应 [J]. 解放军理工大学学报(自然科学版), 2008, 9(1): 52–56. DOI: 10.3969/j.issn.1009-3443.2008.01.011.YAN Haichun, FANG Qin, CHEN Li. Damage effect on top plate of layered structure under impact of falling mass from blast layer [J]. Journal of PLA University of Science and Technology (Natural Science Edition) , 2008, 9(1): 52–56. DOI: 10.3969/j.issn.1009-3443.2008.01.011.