干水材料对瓦斯爆燃抑制的实验研究

陈先锋 樊傲 袁必和 廖若愚 何松 代华明

陈先锋, 樊傲, 袁必和, 廖若愚, 何松, 代华明. 干水材料对瓦斯爆燃抑制的实验研究[J]. 爆炸与冲击, 2019, 39(11): 115401. doi: 10.11883/bzycj-2018-0236
引用本文: 陈先锋, 樊傲, 袁必和, 廖若愚, 何松, 代华明. 干水材料对瓦斯爆燃抑制的实验研究[J]. 爆炸与冲击, 2019, 39(11): 115401. doi: 10.11883/bzycj-2018-0236
CHEN Xianfeng, FAN Ao, YUAN Bihe, LIAO Ruoyu, HE Song, DAI Huaming. Experimental study on suppression of gas deflagration by dry water materials[J]. Explosion And Shock Waves, 2019, 39(11): 115401. doi: 10.11883/bzycj-2018-0236
Citation: CHEN Xianfeng, FAN Ao, YUAN Bihe, LIAO Ruoyu, HE Song, DAI Huaming. Experimental study on suppression of gas deflagration by dry water materials[J]. Explosion And Shock Waves, 2019, 39(11): 115401. doi: 10.11883/bzycj-2018-0236

干水材料对瓦斯爆燃抑制的实验研究

doi: 10.11883/bzycj-2018-0236
基金项目: 国家重点研发计划(2017YFC0804705,2018YFC0808504);国家自然科学基金(51774221,51703175)
详细信息
    作者简介:

    陈先锋(1975- ),男,博士,教授,cxf618@whut.edu.cn

    通讯作者:

    袁必和(1988- ),男,博士,副教授,yuanbh@whut.edu.cn

  • 中图分类号: O381

Experimental study on suppression of gas deflagration by dry water materials

  • 摘要: 为了研制绿色环保高效的抑爆剂,以疏水型气相二氧化硅和去离子水为原料,采用机械搅拌法制备具有“固包液”结构的干水材料。利用20 L近球形爆炸装置测试干水材料对瓦斯爆燃的抑制效果。实验结果表明:当添加的干水材料较少(2 g和3 g)时,干水材料对瓦斯爆燃产生促进效果;当添加的干水材料大于4 g时,对瓦斯爆燃有抑制效果。通过研究不同粒径的干水材料对瓦斯爆燃的影响,发现干水材料的粒径对瓦斯爆燃最大压力的影响较小,但显著影响最大爆燃压力上升速率;对比不同类型改性干水材料对瓦斯爆燃的抑制效果,综合比较得出抑制效果由强到弱顺序为:尿素改性干水材料、磷酸二氢铵改性干水材料、聚磷酸铵改性干水材料、普通干水材料。
  • 图  1  休止角测试示意图

    Figure  1.  The diagram of repose angle test

    图  2  实验装置示意图

    Figure  2.  Schematic diagram of experimental device

    图  3  干水材料质量变化图

    Figure  3.  Mass variation diagram of dry water materials

    图  4  甲烷气体爆燃特性曲线图

    Figure  4.  Deflagration characteristic curves of methane gas

    图  5  不同体积分数甲烷的最大爆燃压力和最大爆燃压力上升速率曲线图

    Figure  5.  Maximum deflagration pressure and maximum deflagration pressure rising rate curves at different volume fractions of methane

    图  6  添加抑爆剂后甲烷气体爆燃特性曲线图

    Figure  6.  Deflagration characteristic curves of methane gas after adding suppression agent

    图  7  干水材料TG-DSC曲线图

    Figure  7.  TG-DSC curves of dry water materials

    图  8  干水材料抑制甲烷气体爆燃的原理图

    Figure  8.  Schematic diagram of methane gas deflagration inhibition by dry water materials

    图  9  添加不同质量干水材料后甲烷爆燃特性曲线图

    Figure  9.  Deflagration characteristic curves of methane gas after adding different concentrations of dry water materials

    图  10  添加不同质量干水材料时甲烷爆燃的最大爆燃压力和最大爆燃压力上升速率曲线图

    Figure  10.  Methane deflagration curves of maximum deflagration pressure and maximum deflagration pressure rising rate after adding different concentrations of dry water materials

    图  11  添加不同粒径干水材料甲烷气体爆燃特性曲线图

    Figure  11.  Deflagration characteristic curves of methane gas after adding different sizes of dry water materials

    图  12  添加不同粒径干水材料后甲烷爆燃的最大爆燃压力和最大爆燃压力上升速率曲线图

    Figure  12.  Methane deflagration curves of maximum deflagration pressure and maximum deflagration pressure rising rate after adding different sizes of dry water materials

    图  13  添加不同改性干水材料甲烷气体爆燃特性曲线图

    Figure  13.  Deflagration characteristic curves of methane gas after adding different modified dry water materials

    图  14  添加不同改性干水材料后甲烷爆燃的最大爆燃压力和最大爆燃压力上升速率曲线图

    Figure  14.  Methane deflagration curves of maximum deflagration pressure and maximum deflagration pressure rising rate after adding different modified dry water materials

    图  15  添加不同含量聚磷酸铵改性干水、磷酸二氢铵改性干水尿素改性干水的甲烷气体爆燃特性曲线

    Figure  15.  Deflagration characteristic curves of methane gas after adding different concentrations of ammonium polyphosphate modified dry water, ammonium dihydrogen phosphate modified dry water and urea modified dry water

    表  1  干水材料的流动性与离心测试结果

    Table  1.   Flowability and centrifugal test results of dry water materials

    材料名称休止角/(°)在离心机不同转速下破裂干水材料的体积/mL
    2 000 r/min3 000 r/min4 000 r/min
    干水材料33.105.512.1
    磷酸二氢铵改性干水材料34.905.110.4
    聚磷酸铵改性干水材料35.205.29.8
    尿素改性干水材料34.405.110.3
    下载: 导出CSV

    表  2  改性剂含量对甲烷气体爆燃特性参数的影响

    Table  2.   Effect of modifier concentration on deflagration characteristic parameters of methane gas

    改性剂
    种类
    改性剂
    含量/%
    最大爆燃
    压力/MPa
    最大爆燃压力上升速率/(MPa·s−1)
    聚磷酸铵100.343.71
    200.425.12
    300.445.20
    磷酸二氢铵100.283.13
    200.353.56
    300.507.10
    尿素100.202.00
    200.272.87
    300.292.67
    下载: 导出CSV
  • [1] 陈娟, 赵耀江. 近十年来我国煤矿事故统计分析及启示 [J]. 煤炭工程, 2012, 1(3): 137–139. DOI: 10.3969/j.issn.1671-0959.2012.03.049.

    CHEN Juan, ZHAO Yaojiang. Statistical analysis and enlightenment of China’s coal mine accidents in recent ten years [J]. Coal Engineering, 2012, 1(3): 137–139. DOI: 10.3969/j.issn.1671-0959.2012.03.049.
    [2] 牛超, 施龙青, 肖乐乐, 等. 2001-2013年煤矿生产事故分类研究 [J]. 煤矿安全, 2015, 46(3): 208–211.

    NIU Chao, SHI Longqing, XIAO Lele, et al. Study on accidents classification of coal mine from 2001 to 2013 [J]. Safety in Coal Mines, 2015, 46(3): 208–211.
    [3] SHEN X, XIU G, WU S. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition [J]. Applied Thermal Engineering, 2017, 120: 741–747. DOI: 10.1016/j.applthermaleng.2017.04.040.
    [4] KUNDU S, ZANGANEH J, MOGHTADERI B. A review on understanding explosions from methane–air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 507–523. DOI: 10.1016/j.jlp.2016.02.004.
    [5] 罗振敏, 康凯. CO2抑制甲烷-空气链式爆炸微观机理的仿真分析 [J]. 中国安全科学学报, 2015, 25(5): 42–48.

    LUO Zhenmin, KANG Kai. Simulative analysis of microscopic mechanism of CO2 inhibiting methane-air chain explosion [J]. China Safety Science Journal, 2015, 25(5): 42–48.
    [6] 罗振敏, 葛岭梅, 邓军, 等. 纳米粉体对矿井瓦斯的抑爆作用 [J]. 湖南科技大学学报(自然科学版), 2009, 24(2): 19–23.

    LUO Zhenmin, GE Lingmei, DENG Jun, et al. The antidetonation effect of nano powder on mine gas [J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2009, 24(2): 19–23.
    [7] 罗振敏, 邓军, 文虎, 等. 小型管道中瓦斯爆炸火焰传播特性的实验研究 [J]. 中国安全科学学报, 2007, 17(5): 106–109. DOI: 10.3969/j.issn.1003-3033.2007.05.019.

    LUO Zhenmin, DENG Jun, WEN Hu, et al. Experimental Study on Flame Propagation Characteristics of Gas Explosion in Small-scale Duct [J]. China Safety Science Journal, 2007, 17(5): 106–109. DOI: 10.3969/j.issn.1003-3033.2007.05.019.
    [8] 毕明树, 李铮, 张鹏鹏. 细水雾抑制瓦斯爆炸的实验研究 [J]. 采矿与安全工程学报, 2012, 29(3): 440–443.

    BI Mingshu, LI Zheng, ZHANG Pengpeng. Experimental investigation on suppression of gas explosion with water mist [J]. Journal of Mining and Safety Engineering, 2012, 29(3): 440–443.
    [9] 范宝春, 李鸿志. 惰性颗粒抑爆过程的数值模拟 [J]. 爆炸与冲击, 2000, 20(3): 208–214.

    FAN Baochun, LI Hongzhi. Numerical simulations of explosion suppression by inert particles pipelines [J]. Explosion and Shock Waves, 2000, 20(3): 208–214.
    [10] SCHUTTE D, SCHMITZ FZ, BRUNNER H. Predominantly aqueous compositions in a fluffy powdery form approximating powdered solids behavior and process for forming same: US3393155[P]. 1968-07-16.
    [11] BINKS B P, TYOWUA A T. Particle-stabilized powdered water-in-oil emulsions [J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(13): 3110–3115.
    [12] SALEH K, FORNY L, GUIGON P, et al. Dry water: From physico-chemical aspects to process-related parameters [J]. Chemical Engineering Research and Design, 2011, 89(5): 537–544.
    [13] 梁华杰. 干水的性能及水合物储气研究[D]. 广州: 华南理工大学, 2010.

    LIANG Huajie. Study on the properties of dry water and hydrate gas storage[D]. Guangzhou: South China University of Technology, 2010.
    [14] CARTER B O, WANG W, ADAMS D J, et al. Gas storage in " dry water” and " dry gel” clathrates [J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(5): 3186–3193.
    [15] 贺娟. 新型干水灭火剂的研究 [D]. 西安: 西安科技大学, 2014.

    HE Juan. Research of new dry water extinguishing agent [D]. Xi’an: Xi’an University of Science and Technology, 2014.
    [16] 李云峰. 超细氢氧化铝粉体的表面改性及其阻燃研究[D]. 长沙: 中南大学, 2012.

    LI Yunfeng. Study on surface modification and flame retardant of super-fine aluminium trihydroxide powder [D]. Changsha: Central South University, 2012.
    [17] 胡双启. 燃烧与爆炸[M]. 北京: 北京理工大学出版社, 2015:18-21.
    [18] 汪齐方, 李春忠, 王志庭, 等. 六甲基二硅胺烷对气相法白炭黑的表面改性 [J]. 华东理工大学学报(自然科学版), 2001, 27(6): 626–630. DOI: 10.3969/j.issn.1006-3080.2001.06.011.

    WANG Qifang, LI Chunzhong, WANG Zhiting, et al. Fumed silica modified by hexamethyldisilazane [J]. Journal of East China University of Science and Technology (Natural Science Edition), 2001, 27(6): 626–630. DOI: 10.3969/j.issn.1006-3080.2001.06.011.
    [19] 林金斌, 刘畅, 陈洪龄, 等. HDI/SiO2与HMDS/HDI/SiO2有机无机杂化颗粒的合成与表征 [J]. 南京工业大学学报(自科版), 2012, 34(6): 12–17.

    LIN Jinbin, LIU Chang, CHEN Hongling, et al. Preparation and characterization of HDI/SiO2 and HMDS/HDI/SiO2 hybrid particles [J]. Journal of Nanjing University of Technology (Natural Science Edition), 2012, 34(6): 12–17.
    [20] 刘晅亚, 陆守香, 朱迎春. 水雾作用下甲烷/空气预混火焰的光谱特性 [J]. 燃烧科学与技术, 2008, 14(1): 44–49. DOI: 10.3321/j.issn:1006-8740.2008.01.009.

    LIU Hengya, LU Shouxiang, ZHU Yingchun. Study of methane air premixed flame emission spectrum under the influence of water mist [J]. Journal of Combustion Science and Technology, 2008, 14(1): 44–49. DOI: 10.3321/j.issn:1006-8740.2008.01.009.
    [21] 张鹏鹏. 超细水雾增强与抑制瓦斯爆炸的实验研究[D].大连: 大连理工大学, 2013.

    ZHANG Pengpeng. Experimental Study of enhancing and mitigating the methane/air explosion by ultrafine water mist [D]. Dalian: Dalian University of Technology, 2013.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  6117
  • HTML全文浏览量:  1403
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-02
  • 修回日期:  2018-11-27
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回