Dynamic behaviors of a hollow reinforced concrete column with an inner octagon steel tube under lateral impact
-
摘要: 以一种内衬八边形钢管空心钢筋混凝土柱为研究对象,在自主研发的无导轨式大型落锤试验机上,完成了3种不同边界条件、2种不同冲击高度以及2种不同轴压比的侧向冲击实验。研究了不同冲击高度、边界条件和轴压比下试件的破坏形态、冲击力时程曲线和跨中位移时程曲线,并选取一根普通空心钢筋混凝土试件与同条件的内衬钢管空心钢筋混凝土试件进行了对比。结果表明:用内衬钢管替代内置钢筋笼使得构件的抗冲击性能明显优于相应的普通空心钢筋混凝土构件,且在轴压比不超过0.3的范围内,轴压比的改变对冲击结束后本内衬八边形钢管空心钢筋混凝土试件的残余挠度影响不大。Abstract: A kind of hollow reinforced concrete column with inner octagon steel tube is considered as the object of this study. The experiments are carried out using a large drop testing machine which was designed by ourselves. The analysis parameters included the boundary conditions, the impact heights and the axial compression ratios. During the experiments, the time history curves of the impact force and the lateral deformation of specimens were recorded. As well as, the failure forms of specimens were observed after the impact tests. A common hollow reinforced concrete specimen was selected and compared with the hollow reinforced concrete column with inner octagon steel tube under the same conditions. The results show that the impact resistance of the hollow reinforced concrete columns with inner octagon steel tube is obviously better than that of the corresponding hollow reinforced concrete columns by using the inner steel tube instead of the built-in steel cage. Within the range of axial compression ratio not exceeding 0.3, the change of axial compression ratio has little effect on the residual deflection of hollow reinforced concrete columns with inner octagon steel tube after impact.
-
Key words:
- inner steel tube /
- hollow reinforced concrete /
- lateral impact /
- dynamic behavior
-
表 1 试件材料几何尺寸和性质
Table 1. Geometry and properties of specimens
钢材 型号 屈服强度/MPa 极限强度/MPa 弹性模量/GPa 直径/mm 壁厚/mm 纵筋 HRB400 455.50 641.6 199 15.6 − 箍筋 HRB400 475.38 670.0 202 7.7 − 八边形钢管 Q345 298.00 447.0 206 − 3.91 注:表中的钢筋直径为所购买商品钢筋的直径实测值。 表 2 落锤参数
Table 2. Parameters of drop-weight
名称 直径/mm 高度/mm 质量/kg 锤体 490 486 719.43 锤头顶部 490 150 221.2 冲击力传感器 300 150 82.9 锤头底部 450 100 124.37 表 3 试件编号和试验结果
Table 3. The results of specimens
试件编号 轴压比 冲击高度/mm 冲击能量/kJ 冲击力峰值/kN 高度尺所测残余挠度/mm FF-2 0 2 001 2.25×104 10 527.91 6 FF-5 0 5 000 5.63×104 17 958.78 29 FS-2 0 2 000 2.25×104 15 939.84 3 FS-5 0 5 001 5.63×104 16 439.58 31 SS-2 0 2 000 2.25×104 11 431.50 3 SS-5 0 4 999 5.63×104 16 216.93 39 A2-2 0.2 2 000 2.25×104 9 474.40 2 A2-5 0.2 5 001 5.63×104 20 666.35 28 A3-2 0.3 2 001 2.25×104 9 243.23 2 A3-5 0.3 5 000 5.63×104 34 292.97 28 RA3-5 0.3 5 000 5.63×104 36 846.45 68 -
[1] 陆新征. 超高车辆撞击桥梁上部结构研究—破坏机理、设计方法和防护对策[M]. 北京: 中国建筑工业出版社, 2011. [2] 崔堃鹏, 夏禾, 夏超逸, 等. 汽车撞击桥墩瞬态撞击力的等效静力计算 [J]. 振动与冲击, 2014, 33(4): 48–69. DOI: 10.13465/j.cnki.jvs.2014.04.010.CUI Kunpeng, XIA He, XIA Chaoyi, et al. Equivalent static force calculation methods for transient impact force of a vehicle in collision with piers [J]. Journal of Vibration and Shock, 2014, 33(4): 48–69. DOI: 10.13465/j.cnki.jvs.2014.04.010. [3] 田力, 朱聪, 王浩, 等. 碰撞冲击荷载作用下钢筋混凝土柱的动态响应及破坏模式 [J]. 工程力学, 2013, 30(2): 150–155. DOI: 10.6052/j.issn.1000-4750.2011.07.0458.TIAN Li, ZHU Cong, WANG Hao, et al. Dynamic response and failure modes of RC columns under impact [J]. Engineering Mechanics, 2013, 30(2): 150–155. DOI: 10.6052/j.issn.1000-4750.2011.07.0458. [4] 曾翔, 许斌. 无腹筋钢筋混凝土梁抗冲击行为试验研究 [J]. 土木工程学报, 2012, 45(9): 63–73. DOI: 10.15951/j.tmgcxb.2012.09.022.ZENG Xiang, XU Bin. Experimental study on the impact-resistant behavior of RC beams without shear-resistant rebar [J]. China Civil Engineering Journal, 2012, 45(9): 63–73. DOI: 10.15951/j.tmgcxb.2012.09.022. [5] 许斌, 曾翔. 冲击荷载作用下钢筋混凝土梁性能试验研究 [J]. 土木工程学报, 2014, 47(2): 41–51. DOI: 10.15951/j.tmgcxb.2014.02.010.XU Bin, ZENG Xiang. Experimental study on the behaviors of reinforced concrete beams under impact loadings [J]. China Civil Engineering Journal, 2014, 47(2): 41–51. DOI: 10.15951/j.tmgcxb.2014.02.010. [6] 许斌, 曾翔. 冲击作用下钢筋混凝土深梁动力性能试验研究 [J]. 振动与冲击, 2015, 34(4): 6–13. DOI: 10.13465/j.cnki.jvs.2015.04.002.XU Bin, ZENG Xiang. Tests for dynamic behaviors of deep RC beams under impact loadings [J]. Journal of Vibration and Shock, 2015, 34(4): 6–13. DOI: 10.13465/j.cnki.jvs.2015.04.002. [7] 瞿海雁, 李国强, 孙建运, 等. 侧向冲击作用下钢管混凝土构件的简化分析模型 [J]. 同济大学学报(自然科学版), 2011, 39(1): 35–41. DOI: 10.3969/j.issn.0253-374x.2011.01.007.QU Haiyan, LI Guoqiang, SUN Jianyun, et al. Simplified analysis model of circular concrete-filled steel tube specimen under lateral impact [J]. Journal of Tongji University (Natural Science), 2011, 39(1): 35–41. DOI: 10.3969/j.issn.0253-374x.2011.01.007. [8] 钱长根. 侧向冲击荷载作用下钢筋混凝土空心桥墩的受力性能研究[D]. 南京: 南京工业大学, 2015. [9] 许紫刚, 贾俊峰, 韩强, 等. 双轴压弯作用下RC桥墩矩形空心截面性能评价 [J]. 工程力学, 2015, 32(1): 17–25. DOI: 10.6052/j.issn.1000-4750.2013.08.0714.XU Zigang, JIA Junfeng, HAN Qiang, et al. Behavior evaluation of rectangular hollow cross-section of rc piers subjected to axial compression and biaxial bending [J]. Engineering Mechanics, 2015, 32(1): 17–25. DOI: 10.6052/j.issn.1000-4750.2013.08.0714. [10] 董振华, 杜修力, 韩强. 水平双向反复荷载作用下RC矩形空心桥墩的滞回模型研究 [J]. 工程力学, 2016, 33(4): 24–33. DOI: 10.6052/j.issn.1000-4750.2014.10.0905.DONG Zhenhua, DU Xiuli, HAN Qiang. Study on hysteretic model of rc bridge pier with rectangular hollow section under lateral-birectional cyclic load [J]. Engineering Mechanics, 2016, 33(4): 24–33. DOI: 10.6052/j.issn.1000-4750.2014.10.0905. [11] PRIESTLEY M J N , PARK R. Strength and ductility of concrete bridge columns under seismic loading [J]. ACI Structural Journal, 1987, 84(1): 61–76. [12] ZAHN F A , PARK R, PRIESTLEY M J N. Flexural strength and ductility of circular hollow reinforced concrete columns without confinement on inside face [J]. ACI Structural Journal, 1990, 87(2): 156–166. [13] 贾志路, 王蕊. 侧向冲击下箱形钢管混凝土叠合柱动力响应试验研究 [J]. 建筑结构学报, 2017, 38(S): 165–171. DOI: 10.14006/j.jzjgxb.2017.S1.022.JIA Zhilu, WANG Rui. Experimental study on dynamic response of box concrete-encased CFST columns under lateral impact [J]. Journal of Building Structures, 2017, 38(S): 165–171. DOI: 10.14006/j.jzjgxb.2017.S1.022. [14] 王蕊. 钢管混凝土结构构件在侧向撞击下动力响应及其损伤破坏的研究[D]. 太原: 太原理工大学, 2008.