冲击载荷下两裂纹间的连通规律

周琴 朱哲明 王雄 董玉清 周磊

周琴, 朱哲明, 王雄, 董玉清, 周磊. 冲击载荷下两裂纹间的连通规律[J]. 爆炸与冲击, 2019, 39(11): 113201. doi: 10.11883/bzycj-2018-0247
引用本文: 周琴, 朱哲明, 王雄, 董玉清, 周磊. 冲击载荷下两裂纹间的连通规律[J]. 爆炸与冲击, 2019, 39(11): 113201. doi: 10.11883/bzycj-2018-0247
ZHOU Qin, ZHU Zheming, WANG Xiong, DONG Yuqing, ZHOU Lei. Connecting modes of two cracks under impact loads[J]. Explosion And Shock Waves, 2019, 39(11): 113201. doi: 10.11883/bzycj-2018-0247
Citation: ZHOU Qin, ZHU Zheming, WANG Xiong, DONG Yuqing, ZHOU Lei. Connecting modes of two cracks under impact loads[J]. Explosion And Shock Waves, 2019, 39(11): 113201. doi: 10.11883/bzycj-2018-0247

冲击载荷下两裂纹间的连通规律

doi: 10.11883/bzycj-2018-0247
基金项目: 国家自然科学基金(11672194;11702181);四川省安全监督局安全生产科技项目(aj20170515161307);四川省科技计划(18SYXHZ0094)
详细信息
    作者简介:

    周 琴(1994- ),女,硕士,937766477@qq.com

    通讯作者:

    朱哲明(1965- ),男,博士,教授,zhemingzhu@hotmail.com

  • 中图分类号: O346.1

Connecting modes of two cracks under impact loads

  • 摘要: 脆性材料内部含有大量裂纹,当某一裂纹扩展时,其他裂纹会对扩展裂纹产生影响。为了研究冲击载荷下,脆性材料内两裂纹的相互影响、连通规律及裂纹尖端应力强度因子的变化规律,利用有机玻璃板制作了含非平行双裂纹的实验试件,利用落板冲击设备进行了中低速冲击实验,结合有限元分析软件ABAQUS计算出裂纹尖端应力强度因子,利用有限差分软件AUTODYN进行了动态数值模拟研究,并将其模拟结果与实验结果进行对比分析。实验及模拟结果表明:裂纹破坏形态与AUTODYN数值模拟破坏形态基本一致;试件的断裂形态随着两裂纹间距不同而不同;裂纹间的相互影响程度随着裂纹间间距增大而减小;裂纹尖端应力强度因子KI随着裂纹间距的增大而减小,而KII随着裂纹间距增大而增大。
  • 图  1  试件模型及尺寸示意图(单位:mm)

    Figure  1.  Sketch of specimen (unit: mm)

    图  2  CPG示意图

    Figure  2.  The sketch of CPG

    图  3  落板式冲击设备和测试系统

    Figure  3.  Drop weight impacting test system

    图  4  入射板和透射板上的应变片测得的电压信号

    Figure  4.  Voltage signals recorded from incident and transmit plate

    图  5  试件上作用的应力波曲线

    Figure  5.  Curve of stress wave versus time acts on specimen

    图  6  监测点应变片断裂时刻确定方式示意图

    Figure  6.  Method for determining time of the strain gauges

    图  7  不同D值(D表示竖直裂纹尖端到倾斜裂纹中心距离)裂纹扩展路径的实验和模拟对比图(θ=45°)

    Figure  7.  Comparison test results with simulation results for the specimens with different D the distance between vertical crack tip to the center of incline crack (θ=45°)

    图  8  裂纹扩展过程中的第一主应力云图

    Figure  8.  Contour plots of first principal stress during crack propagation.

    图  9  裂纹扩展路径上特殊点处的周向应力分布图

    Figure  9.  Circumferential stress on the ahead of propagation crack tip

    图  10  利用ABAQUS软件进行的网格划分

    Figure  10.  Mesh of specimen in ABAQUS code

    图  11  竖直裂纹尖端应力强度因子随时间变化曲线

    Figure  11.  The curve of stress intensity factor at crack1 tip with time

    图  12  倾斜裂纹的两个尖端的应力强度因子随时间变化曲线

    Figure  12.  The curves of stress intensity factors at the two tips of incline crack versus time

    图  13  CPG示意图及其所测信号

    Figure  13.  The sketch of CPG and voltage signal recorded in experiment

    图  14  极限应力强度因子确定方法

    Figure  14.  Determination of propagation critical stress intensity factors

    表  1  试件样本和实验时落板高度及冲击速度

    Table  1.   Height of drop weight plate and impact velocity for each specimen

    试件编号D/mmH/mmv/(m·s−1)
    D100−A451001.8406.005
    D75−A45 751.8656.046
    D50−A45 501.8275.984
    D25−A45 251.8346.000
    D20−A45 201.8546.028
    D15−A45 151.8476.017
    D10−A45 101.8285.986
    下载: 导出CSV

    表  2  落板冲击设备部件参数

    Table  2.   Parameters of impacting test system

    部件名称高度/mm宽度/mm厚度/mm弹性模量/GPa泊松比
    落板 15048030
    入射板3 00030030720.33
    透射板2 00030030720.33
    下载: 导出CSV

    表  3  各对照组起裂时刻及起裂韧度

    Table  3.   Initiation time and initiation toughness for each specimen

    试件编号起裂时刻tf /μs起裂韧度
    D10−A452724.99
    D15−A452674.85
    D20−A452754.53
    D25−A452594.36
    D20−A452644.24
    D15−A452604.19
    D10−A452634.22
    下载: 导出CSV
  • [1] 劳恩. 脆性固体断裂力学 [M].2版.龚江洪, 译. 北京: 高等教育出版社; 2010: 2−5.
    [2] 李世愚, 和泰名, 尹祥础. 岩石断裂力学[M]. 北京: 科学出版社, 2015. 42−48.
    [3] 范天佑. 断裂理论基础[M]. 北京: 科学出版社; 2003.
    [4] 朱哲明, 汪元, 周章涛. 脆性材料在压缩载荷作用下的断裂破坏准则 [J]. 四川大学学报(工程科学版), 2008, 40(5): 13–21. DOI: 10.15961/j.jsuese.2008.05.003.

    ZHU Zheming, WANG Yuan, ZHOU Zhangtao, et al. A new fracture criterion for brittle materials under compression [J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(5): 13–21. DOI: 10.15961/j.jsuese.2008.05.003.
    [5] ZHU Zheming. An alternative form of propagation criterion for two collinear cracks under compression [J]. Mathematics and Mechanics of Solids, 2009, 14(8): 727–746. DOI: 10.1177/1081286508090043.
    [6] ZHU Zheming, XIE Heping, JI Shaocheng. The mixed boundary problems for a mixed mode crack in a finite plate [J]. Engineering Fracture Mechanics, 1997, 56(5): 647–655. DOI: 10.1016/S0013-7944(96)00123-3.
    [7] ZHU Zheming, WANG Laigui, MOHANTY B, et al. Stress intensity factor for a cracked specimen under compression [J]. Engineering Fracture Mechanics, 2006, 73(4): 482–489. DOI: 10.1016/j.engfracmech.2005.08.008.
    [8] ZHENG Tao, ZHU Zheming, WANG Bo, et al. Stress intensity factor for an infinite plane containing three collinear cracks under compression [J]. Journal of Applied Mathematics and Mechanics, 2015, 94(10): 853–861. DOI: 10.1002/zamm.201300001.
    [9] ITOU S. 3D dynamic stress intensity factors at three rectangular cracks in an infinite elastic medium subjected to a time-harmonic stress wave [J]. Archive of Applied Mechanics, 1999, 69(4): 286–298. DOI: 10.1007/s004190050220.
    [10] 钟波波, 张永彬, 李宏. 基于RFPA2D的岩石裂纹扩展模式的研究 [J]. 武汉理工大学学报, 2014, 36(2): 82–88. DOI: 10.3963/j.issn.1671-4431.2014.02.016.

    ZHONG Bobo, ZHANG Yongbin, LI Hong. Study of mechanisms of crack propagation of rock based on RFPA [J]. Journal of Wuhan University of Technology, 2014, 36(2): 82–88. DOI: 10.3963/j.issn.1671-4431.2014.02.016.
    [11] LOUIS N, LI Huaqiang. Numerical study on coalescence of two pre-existing coplanar flaws in rock [J]. International Journal of Solids and Structures, 2013, 50(22/23): 3685–3706. DOI: 10.1016/j.ijsolstr.2013.07.010.
    [12] YANG Shengqi, HUANG Yanhua. Erratum to: An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression [J]. Engineering Geology, 2017, 217. DOI: 10.1016/j.enggeo.2016.12.004.
    [13] NASRI K, ABBADI M, ZENASNI M, et al. Double crack growth analysis in the presence of a bi-material interface using XFEM and FEM modelling [J]. Engineering Fracture Mechanics, 2014, 132: 189–199. DOI: 10.1016/j.engfracmech.2014.07.016.
    [14] HAERI H, SARFARAZI V, MARJI M F, et al. Experimental and numerical study of shear fracture in brittle materials with interference of initial double cracks [J]. Acta Mechanica Solida Sinica, 2016, 29(5): 555–566. DOI: 10.1016/S0894-9166(16)30273-7.
    [15] ZHANG Xiaoping, LIU Quansheng, WU Shunchuan, et al. Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression [J]. Engineering Geology, 2015, 199: 74–90. DOI: 10.1016/j.enggeo.2015.10.007.
    [16] CAO Ping, LIU Taoying, PU Chengzhi, et al. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression [J]. Engineering Geology, 2015, 187: 113–121. DOI: 10.1016/j.enggeo.2014.12.010.
    [17] 岳中文, 宋耀, 邱鹏, 等. 冲击载荷下双预置裂纹三点弯曲梁动态断裂实验 [J]. 振动与冲击, 2017, 36(4): 151–156. DOI: 10.13465/j.cnki.jvs.2017.04.024.

    YUE Zhongwen, SONG Yao, QIU Peng, et al. A dynamic fracture experiment of a three-point-bend beam containing double pre-existing cracks under impact load [J]. Journal of Vibration and Shock, 2017, 36(4): 151–156. DOI: 10.13465/j.cnki.jvs.2017.04.024.
    [18] 张华, 郭继鑫, 傅玉珍, 等. 冲击作用下混凝土裂纹扩展试验研究及数值模拟 [J]. 振动与冲击, 2016, 35(17): 107–112. DOI: 10.13465/j.cnki.jvs.2016.17.018.

    ZHANG Hua, GUO Jixin, FU Yuzhen, et al. Test and simulation for concrete crack propagation under impact load [J]. Journal of Vibration and Shock, 2016, 35(17): 107–112. DOI: 10.13465/j.cnki.jvs.2016.17.018.
    [19] 杨井瑞, 张财贵, 周妍, 等. 用SCDC试样测试岩石动态断裂韧度的新方法 [J]. 岩石力学与工程学报, 2015, 34(2): 279–292. DOI: 10.13722/j.cnki.jrme.2015.02.007.

    YANG Jingrui, ZHANG Caigui, ZHOU Yan, et al. A new method for determining dynamic fracture toughness of rock using SCDC specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 279–292. DOI: 10.13722/j.cnki.jrme.2015.02.007.
    [20] 刘凯, 朱哲明, 何廉. 脆性材料裂纹动态扩展规律研究 [J]. 四川大学学报(工程科学版), 2015, 47(S2): 81–88. DOI: 10.15961/j.jsuese.2015.s2.013.

    LIU Kai, ZHU Zheming, HE Lian. The study of crack dynamic propagation law of brittle materials [J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(S2): 81–88. DOI: 10.15961/j.jsuese.2015.s2.013.
    [21] 汪小梦, 朱哲明, 施泽彬, 等. 基于VB-SCSC岩石试样的动态断裂韧度测试方法研究 [J]. 岩石力学与工程学报, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.

    WANG Xiaomeng, ZHU Zheming, SHI Zebin, et al. A method measuring dynamic fracture toughness of rock using VB-SCSC specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.
    [22] 刘德顺, 李夕兵. 冲击机械系统动力学 [M]. 北京: 科学出版社, 1999.
    [23] 郭伟国, 李玉龙, 索涛编. 应力波基础简明教程 [M]:西安: 西北工业大学出版社; 2007: 44−52.
    [24] ZHE Zheming, XIE Heping, MOHANTY B. Numerical investigation of blasting-induced damage in cylindrical rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 111–121. DOI: 10.1016/j.ijrmms.2007.04.012.
    [25] ZHU Zheming, MOHANTY B, XIE Heping. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. DOI: 10.1016/j.ijrmms.2006.09.002.
    [26] 朱哲明, 刘凯, 康骥鸣, 等. 缓慢卸载P波诱发岩体不连续断裂破坏的可能性研究 [J]. 岩石力学与工程学报, 2014, 33(2): 3948–3955. DOI: 10.13722/j.cnki.jrme.2014.s2.070.

    ZHU Zheming, LIU Kai, KANG Jiming, et al. Study of slowly unloading P-waves causing discrete fracture mechanism [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 3948–3955. DOI: 10.13722/j.cnki.jrme.2014.s2.070.
    [27] 周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下巷道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.

    ZHOU Lei, ZHU Zheming, DONG Yuqing, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
    [28] 刘瑞峰, 朱哲明, 李盟, 等. 爆炸载荷下I型裂纹的起裂及扩展规律研究 [J]. 岩石力学与工程学报, 2018, 37(2): 392–402. DOI: 10.13722/j.cnki.jrme.2017.1126.

    LIU Ruifeng, ZHU Zheming, LI Meng, et al. Initiation and propagation of mode I crack under blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 392–402. DOI: 10.13722/j.cnki.jrme.2017.1126.
    [29] 王蒙, 朱哲明, 王雄. 冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.

    WANG Meng, ZHU Zheming, WANG Xiong. The growth of mixed-mode Ⅰ/Ⅱ crack under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.
    [30] 周磊, 朱哲明, 应鹏,等. 巷道内I型及I/II复合型裂纹在冲击载荷作用下的断裂行为分析 [J]. 振动与冲击, 2018, 37(13): 33. DOI: 10.13465/j.cnki.jvs.2018.13.033.

    ZHOU Lei, ZHU Zhe-ming, YING Peng, et al. Analysis of fracture behavior of mode I and mixed mode I/II cracks in tunnel under impact loads [J]. Journal of Vibration and Shock, 2018, 37(13): 33. DOI: 10.13465/j.cnki.jvs.2018.13.033.
    [31] CHEN Y M. Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code) [J]. Engineering Fracture Mechanics, 1975, 7(4): 653–660. DOI: 10.1016/0013-7944(75)90021-1.
    [32] 陈景杰, 黄一, 吴智敏. 平行双裂纹应力强度因子的计算方法 [J]. 上海交通大学学报, 2012, 46(8): 1263–1268. DOI: 10.16183/j.cnki.jsjtu.2012.08.015.

    CHEN Jinjie, HUNAG Yi, WU Zhimin. A new method to calculate stress intensity factor for parallel double cracks [J]. Journal of Shanghai Jiao Tong University, 2012, 46(8): 1263–1268. DOI: 10.16183/j.cnki.jsjtu.2012.08.015.
    [33] FREUND L B. Dynamic fracture mechanics [J]. Cambridge Monographs on Mechanics and Applied Mathematics, 1992, 72(8): 383–384. DOI: 10.1002/zamm.19920720818.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  6036
  • HTML全文浏览量:  1572
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-10
  • 修回日期:  2018-11-09
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回