约束端面对管内甲烷爆炸特性的影响

王亚磊 郑立刚 于水军 朱小超 李刚 杜德朋 窦增果

王亚磊, 郑立刚, 于水军, 朱小超, 李刚, 杜德朋, 窦增果. 约束端面对管内甲烷爆炸特性的影响[J]. 爆炸与冲击, 2019, 39(9): 095401. doi: 10.11883/bzycj-2018-0249
引用本文: 王亚磊, 郑立刚, 于水军, 朱小超, 李刚, 杜德朋, 窦增果. 约束端面对管内甲烷爆炸特性的影响[J]. 爆炸与冲击, 2019, 39(9): 095401. doi: 10.11883/bzycj-2018-0249
WANG Yalei, ZHENG Ligang, YU Shuijun, ZHU Xiaochao, LI Gang, DU Depeng, DOU Zengguo. Effect of vented end faces on characteristics of methane explosion in duct[J]. Explosion And Shock Waves, 2019, 39(9): 095401. doi: 10.11883/bzycj-2018-0249
Citation: WANG Yalei, ZHENG Ligang, YU Shuijun, ZHU Xiaochao, LI Gang, DU Depeng, DOU Zengguo. Effect of vented end faces on characteristics of methane explosion in duct[J]. Explosion And Shock Waves, 2019, 39(9): 095401. doi: 10.11883/bzycj-2018-0249

约束端面对管内甲烷爆炸特性的影响

doi: 10.11883/bzycj-2018-0249
基金项目: 国家自然科学基金(51674104,51504083);中国博士后基金(2013M540570);河南省高等学校青年骨干教师项目(2012GGJS-053);河南理工大学创新型科研团队(T2018-2)
详细信息
    作者简介:

    王亚磊(1991- ),男,硕士研究生,2575635245@qq.com

    通讯作者:

    郑立刚(1979- ),男,博士,教授,zhengligang97@163.com

  • 中图分类号: O381; TD712

Effect of vented end faces on characteristics of methane explosion in duct

  • 摘要: 为研究不同约束端面下甲烷的爆炸特性,利用自行搭建的实验平台完成了多种约束端面下不同浓度甲烷的爆炸实验。研究表明:约束端面的性质对甲烷的爆炸特性有显著影响,约束端面的承压强度越高,甲烷的爆炸超压越大。单层PVC薄膜作用下,薄膜破裂,不会引起火焰与超压的振荡;而纸膜破裂后,管道内外气流的高速泄放和回流则会引起超压振荡,使火焰前锋波动并发生扭曲变形;两者共同作用时,PVC薄膜会阻碍气流的泄放与回流,加速超压衰减,抑制火焰和超压的振荡。然而,随着纸膜层数增加,破膜时管道内外形成的巨大压差会使约束端面完全破裂,降低PVC薄膜的抑制作用。当破膜难度达到一定程度时,约束端面作用下的泄压峰值成为不同浓度甲烷爆炸的最大超压峰值,且泄爆压力并不随甲烷浓度的改变而改变,因此不同浓度甲烷的爆炸超压在较高的泄爆压力下相同;此时,相同约束端面下不同浓度甲烷的压力振荡曲线在压力衰减的前半个周期内完全重合,管道内外的压差成为主导超压振荡的重要因素,而不同浓度甲烷的燃烧速率对超压振荡的影响则可以忽略不计。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental setup

    图  2  不同材质薄膜的破裂分析

    Figure  2.  Fracture analysis of films with different materials

    图  3  薄膜破裂形态

    Figure  3.  Morphology of the ruptured films

    图  4  单层纸膜密封下6.5%的甲烷爆炸时上、下两压力传感器所测的压力曲线

    Figure  4.  Pressure profiles of 6.5% methane explosion measured by the two pressure gauges with the upper end sealed by a layer of paper

    图  5  单层PVC薄膜下9.5%的甲烷爆炸火焰与压力耦合图

    Figure  5.  Coupled relationship between flame propagation and overpressure history of 9.5% methane explosionsealed by a single layer of PVC film

    图  6  单层纸膜下6.5%的甲烷爆炸火焰与压力耦合图

    Figure  6.  Coupled relationship between flame propagation and overpressure history of 6.5% methane explosion sealed by a single layer of paper

    图  7  单层纸膜密封下6.5%的甲烷爆炸火焰传播

    Figure  7.  Flame propagation of 6.5% methane explosion sealed by a single layer of paper

    图  8  不同约束端面下11.5%的甲烷爆炸火焰传播

    Figure  8.  Flame propagation of 11.5% methaneunder different confined surfaces

    图  9  不同约束端面下7.5%的甲烷爆炸超压变化

    Figure  9.  Explosion overpressure of 7.5% methane under different confined surfaces

    图  10  不同约束端面下甲烷爆炸超压衰减

    Figure  10.  Explosion overpressure damping process of methane sealed by different films

    表  1  多种约束端面下不同浓度甲烷的爆炸超压

    Table  1.   Explosion overpressure of methane at different concentrations with the upper end sealed by different materials

    甲烷浓度/%爆炸压力/kPa
    1层PVC薄膜1层纸膜1层PVC薄膜+1层纸膜1层PVC薄膜+2层纸膜1层PVC薄膜+3层纸膜1层PVC薄膜+4层纸膜
    6.56.715.319.434.352.269.2
    7.56.714.218.733.657.770.0
    9.57.715.220.133.755.470.2
    11.56.814.919.435.457.070.6
    下载: 导出CSV
  • [1] CAO X Y, REN J J, ZHOU Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive [J]. Journal of Hazardous Materials, 2015, 285: 311–318. DOI: 10.1016/j.jhazmat.2014.11.016.
    [2] JIN K Q, DUAN Q L, LIEW K M, et al. Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct [J]. Journal of Hazardous Materials, 2017, 327: 116–126. DOI: 10.1016/j.jhazmat.2016.12.050.
    [3] 陈东梁, 孙金华, 刘义, 等. 甲烷/空气预混气体火焰的传播特征 [J]. 爆炸与冲击, 2008, 28(5): 385–390.

    CHEN Dongliang, SUN Jinhua, LIU Yi, et al. Propagation characteristics of premixed methane-air flames [J]. Explosion and Shock Waves, 2008, 28(5): 385–390.
    [4] 李阳超, 杜扬, 齐圣, 等. 汽油蒸气/空气预混火焰的无拉伸层流燃烧速率 [J]. 爆炸与冲击, 2017, 37(5): 863–870. DOI: 10.11883/1001-1455(2017)05-0863-08.

    LI Yangchao, DU Yang, QI Sheng, et al. Gasoline vapor/air premixed flame’s unstretched laminar burning velocity [J]. Explosion and Shock Waves, 2017, 37(5): 863–870. DOI: 10.11883/1001-1455(2017)05-0863-08.
    [5] 杨艺, 何学秋, 刘建章, 等. 瓦斯爆燃火焰内部流场分形特性研究 [J]. 爆炸与冲击, 2004, 24(1): 30–36.

    YANG Yi, HE Xueqiu, LIU Jianzhang, et al. Fractal characteristics of flame inner flow field in methane/air explosion [J]. Explosion and Shock Waves, 2004, 24(1): 30–36.
    [6] ZHU C J, LIN B Q, JIANG B Y. Flame acceleration of premixed methane/air explosion in parallel pipes [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(2): 383–390. DOI: 10.1016/j.jlp.2011.10.004.
    [7] 陆胤臣, 陶刚, 张礼敬. 球形容器内甲烷-空气爆炸特性分析与理论计算 [J]. 爆炸与冲击, 2017, 37(4): 773–778. DOI: 10.11883/1001-1455(2017)04-0773-06.

    LU Yinchen, TAO Gang, ZHANG Lijing. Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel [J]. Explosion and Shock Waves, 2017, 37(4): 773–778. DOI: 10.11883/1001-1455(2017)04-0773-06.
    [8] ZHANG K, WANG Z R, YAN C, et al. Effect of size on methane-air mixture explosions and explosion suppression in spherical vessels connected with pipes [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 785–790. DOI: 10.1016/j.jlp.2017.02.013.
    [9] 孙松, 高康华. 管道内气体爆炸时火焰传播湍流因子的研究 [J]. 煤炭学报, 2016, 41(S2): 441–447.

    SUN Song, GAO Kanghua. Study on turbulence factors of flame propagation in tube under gas explosion [J]. Journal of China Coal Society, 2016, 41(S2): 441–447.
    [10] 何学超, 孙金华, 陈先锋, 等. 管道内甲烷-空气预混火焰传播特性的实验与数值模拟研究 [J]. 中国科学技术大学学报, 2009, 39(4): 419–423.

    HE Xuechao, SUN Jinhua, CHEN Xianfeng, et al. Experimental and numerical study on flame propagation and structure behaviors of methane-air premixed combustion in tube [J]. Journal of University of Science and Technology of China, 2009, 39(4): 419–423.
    [11] SUN S, WANG M Y, GAO K H, et al. Effect of vent conditions on internal overpressure time-history during a vented explosion [J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 85–92. DOI: 10.1016/j.jlp.2018.03.002.
    [12] CHAO J, BAUWENS C R, DOROFEEV S B. An analysis of peak overpressures in vented gaseous explosions [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2367–2374. DOI: 10.1016/j.proci.2010.06.144.
    [13] CAO Y, GUO J, HU K L, et al. Effect of ignition location on external explosion in hydrogen-air explosion venting [J]. International Journal of Hydrogen Energy, 2017, 42(15): 10547–10554. DOI: 10.1016/j.ijhydene.2017.01.095.
    [14] SEZER H, KRONZ F, AKKERMAN V Y, et al. Methane-induced explosions in vented enclosures [J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 199–206. DOI: 10.1016/j.jlp.2017.04.009.
    [15] KUZNETSOV M, FRIEDRICH A, STERN G, et al. Medium-scale experiments on vented hydrogen deflagration [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 416–428. DOI: 10.1016/j.jlp.2015.04.013.
    [16] BAUWENS C R, CHAO J, DOROFEEV S B. Effect of hydrogen concentration on vented explosion overpressures from lean hydrogen-air deflagrations [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17599–17605. DOI: 10.1016/j.ijhydene.2012.04.053.
    [17] QI B, QIN F, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084.
    [18] 郑立刚, 苏洋, 李刚, 等. 点火位置对氢气/甲烷/空气预混气体爆燃特性的影响 [J]. 化工学报, 2017, 68(12): 4874–4881. DOI: 10.11949/j.issn.0438-1157.20170369.

    ZHENG Ligang, SU Yang, LI Gang, et al. Effect of ignition position on deflagration characteristics of premixed hydrogen/methane/air [J]. Journal of Chemical Industry and Engineering, 2017, 68(12): 4874–4881. DOI: 10.11949/j.issn.0438-1157.20170369.
    [19] 余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.

    YU Minggao, YANG Xufeng, ZHENG Kai, et al. Effect of obstacles on explosion characteristics of methane/hydrogen [J]. Explosion and Shock Waves, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.
    [20] 余明高, 杨勇, 裴蓓, 牛攀, 朱新娜. N2双流体细水雾抑制管道瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.

    YU Minggao, YANG Yong, PEI Bei, et al. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist [J]. Explosion and Shock Waves, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.
    [21] 王世茂, 杜扬, 李阳超, 等. 含弱约束结构受限空间油气爆炸外部火焰特性 [J]. 后勤工程学院学报, 2016, 32(5): 39–43. DOI: 10.3969/j.issn.1672-7843.2016.05.007.

    WANG Shimao, DU Yang, LI Yangchao, et al. External flame characteristics of gasoline-air mixture explosion in confined space with weakly constrained structure [J]. Journal of Logistical Engineering University, 2016, 32(5): 39–43. DOI: 10.3969/j.issn.1672-7843.2016.05.007.
    [22] 杜扬, 王世茂, 袁广强, 等. 含弱约束端面短管道油气爆炸特性实验研究 [J]. 爆炸与冲击, 2018, 38(2): 465–472. DOI: 10.11883/bzycj-2015-0242.

    DU Yang, WANG Shimao, YUAN Guangqiang, et al. Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end [J]. Explosion and Shock Waves, 2018, 38(2): 465–472. DOI: 10.11883/bzycj-2015-0242.
    [23] FAKANDU B K, ANDREWS G E, PHYLAKTOU H N. Vent burst pressure effects on vented gas explosion reduced pressure [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 429–438. DOI: 10.1016/j.jlp.2015.02.005.
    [24] GUO J, LI Q, CHEN D, et al. Effect of burst pressure on vented hydrogen-air explosion in a cylindrical vessel [J]. International Journal of Hydrogen Energy, 2015, 40(19): 6478–6486. DOI: 10.1016/j.ijhydene.2015.03.059.
    [25] GUO J, WANG C J, LI Q, et al. Effect of the vent burst pressure on explosion venting of rich methane-air mixtures in a cylindrical vessel [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 82–88. DOI: 10.1016/j.jlp.2015.12.006.
    [26] 郑立刚, 吕先舒, 郑凯, 等. 点火源位置对甲烷-空气爆燃超压特征的影响 [J]. 化工学报, 2015, 66(7): 2749–2756. DOI: 10.11949/j.issn.0438-1157.20141789.

    ZHENG Ligang, LV Xianshu, ZHENG Kai, et al. Influence of ignition position on overpressure of premixed methane-air deflagration [J]. Journal of Chemical Industry and Engineering, 2015, 66(7): 2749–2756. DOI: 10.11949/j.issn.0438-1157.20141789.
    [27] HISKEN H, ENSTAD G A, MIDDHA P, et al. Investigation of concentration effects on the flame acceleration in vented channels [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 447–459. DOI: 10.1016/j.jlp.2015.04.005.
    [28] IBRAHIM S S, MASRI A R. The effects of obstructions on overpressure resulting from premixed flame deflagration [J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3): 213–221. DOI: 10.1016/S0950-4230(00)00024-3.
    [29] LV X S, ZHENG L G, ZHANG Y G, et al. Combined effects of obstacle position and equivalence ratio on overpressure of premixed [J]. International Journal of Hydrogen Energy, 2016, 41: 17740–17749. DOI: 10.1016/j.ijhydene.2016.07.263.
    [30] 温小萍, 武建军, 解茂昭. 瓦斯爆炸火焰结构与压力波的耦合规律 [J]. 化工学报, 2013, 64(10): 3871–3877. DOI: 10.3969/j.issn.2013.10.052.

    WEN Xiaoping, WU Jianjun, XIE Maozhao. Coupled relationship between flame structure and pressure wave of gas explosion [J]. Journal of Chemical Industry and Engineering, 2013, 64(10): 3871–3877. DOI: 10.3969/j.issn.2013.10.052.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  5521
  • HTML全文浏览量:  1689
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-10
  • 修回日期:  2018-09-12
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回