TiH2含量对Al/PTFE动态力学性能和撞击感度的影响

于钟深 方向 李裕春 任俊凯 张军 宋佳星

于钟深, 方向, 李裕春, 任俊凯, 张军, 宋佳星. TiH2含量对Al/PTFE动态力学性能和撞击感度的影响[J]. 爆炸与冲击, 2019, 39(9): 092301. doi: 10.11883/bzycj-2018-0256
引用本文: 于钟深, 方向, 李裕春, 任俊凯, 张军, 宋佳星. TiH2含量对Al/PTFE动态力学性能和撞击感度的影响[J]. 爆炸与冲击, 2019, 39(9): 092301. doi: 10.11883/bzycj-2018-0256
YU Zhongshen, FANG Xiang, LI Yuchun, REN Junkai, ZHANG Jun, SONG Jiaxing. Effects of TiH2 content on dynamic mechanical properties and impact sensitivity of Al/PTFE[J]. Explosion And Shock Waves, 2019, 39(9): 092301. doi: 10.11883/bzycj-2018-0256
Citation: YU Zhongshen, FANG Xiang, LI Yuchun, REN Junkai, ZHANG Jun, SONG Jiaxing. Effects of TiH2 content on dynamic mechanical properties and impact sensitivity of Al/PTFE[J]. Explosion And Shock Waves, 2019, 39(9): 092301. doi: 10.11883/bzycj-2018-0256

TiH2含量对Al/PTFE动态力学性能和撞击感度的影响

doi: 10.11883/bzycj-2018-0256
基金项目: 国家自然科学基金(51673213,51704302)
详细信息
    作者简介:

    于钟深(1991- ),男,博士研究生,chunweiyu@qq.com

    通讯作者:

    李裕春(1974- ),男,副教授,liyuchunmail@sina.com

  • 中图分类号: O381;TJ04

Effects of TiH2 content on dynamic mechanical properties and impact sensitivity of Al/PTFE

  • 摘要: 采用混合压制烧结法制备了4种不同TiH2含量的铝/氢化钛/聚四氟乙烯(Al/TiH2/PTFE)试件,并基于分离式霍普金森杆和落锤冲击实验,对反应材料的动态压缩力学性能、撞击感度及反应特性进行了研究。实验结果表明,4种材料均存在应变硬化和应变率硬化效应,随加载应变率的提高,材料屈服强度和硬化模量增大。相同加载应变率下,材料屈服强度随TiH2含量的增加而增高,材料压缩强度则先增高后降低,TiH2质量分数为5%时材料压缩强度达到最大值166.4 MPa,比Al/PTFE强度提高6.8%。在一定含量范围内(小于5%),加入TiH2有助于提高Al/PTFE材料撞击感度和能量释放水平,而TiH2质量分数大于10%时,材料撞击感度和反应剧烈程度则逐渐降低。与Al/PTFE相比,含TiH2试件反应火光周围有明显的火星喷溅现象,且此现象TiH2含量越高越显著。
  • 图  1  烧结工艺时程曲线

    Figure  1.  Temperature history of sintering process

    图  2  烧结后试件

    Figure  2.  Specimens after sintering

    图  3  原始粉末及不同类型试件内部结构的扫描电子显微镜图像

    Figure  3.  Scanning electron microscope images for original materials and different specimens

    图  4  不同应变率下不同类型试件真实应力-应变曲线及同一应变率下(3 200 s−1左右)不同类型材料力学性能的比较

    Figure  4.  Ture stress-strain curves of different types of materials at different strain rates and comparison of mechanical properities among different types of materials at the strain rate of 3 200 s−1

    图  5  不同应变率下B类材料动态压缩后回收放入试样

    Figure  5.  Recovered sample residues of Type B material under dynamic compression at different strain rates

    图  6  90 cm落高下不同试件的反应现象

    Figure  6.  Reaction phenomena of different types of materials at the drop height of 90 cm

    图  7  落锤实验后试样残渣回收

    Figure  7.  Recovered specimen residues after drop-weight test

    表  1  Al/TiH2/PTFE复合材料各组分配比及理论密度

    Table  1.   Component mass fractions and theoretical material densities of Al/TiH2/PTFE granular composites

    材料类型质量分数/%材料理论密度/(g·cm−3)
    AlTiH2PTFE
    A26.5 073.52.31
    B25.2 569.82.36
    C23.81066.22.41
    D21.22058.82.52
    下载: 导出CSV

    表  2  3 200 s−1应变率下不同类型Al/TiH2/PTFE材料力学性能参数

    Table  2.   Mechanical property parameters for different types of Al/TiH2/PTFE at the strain rate of 3 200 s−1

    材料类型屈服强度/MPa压缩强度/MPa失效应变
    A48.3155.80.62
    B52.4166.40.70
    C57.1154.50.65
    D61.3150.90.57
    下载: 导出CSV

    表  3  不同类型Al/TiH2/PTFE材料特性落高

    Table  3.   Characteristic drop height for different types of Al/TiH2/PTFE

    材料类型H50/cm材料类型H50/cm
    A67C75
    B58D83
    下载: 导出CSV
  • [1] WANG Huaixi, LI Yuchun, FENG Bin, et al. Compressive properties of PTFE/Al/Ni composite under uniaxial loading [J]. Journal of Materials Engineering and Performance, 2017, 26(5): 2331–2336. DOI: 10.1007/s11665-017-2666-y.
    [2] XU Fengyue, LIU Shubo, ZHENG Yuanfeng, et al. Quasi-static compression properties and failure of PTFE/Al/W reactive materials [J]. Advanced Engineering Materials, 2017, 19(1): 1600350. DOI: 10.1002/adem.201600350.
    [3] FENG Bin, FANG Xiang, LI Yuchun, et al. An initiation phenomenon of Al-PTFE under quasi-static compression [J]. Chemical Physics Letters, 2015, 637: 38–41. DOI: 10.1016/j.cplett.2015.07.056.
    [4] 徐松林. PTFE/A1含能反应材料力学性能研究[D]. 长沙: 国防科学技术大学, 2010.
    [5] 葛超, 乌布力艾散·麦麦提图尔荪, 田超, 等. 基于气炮实验的PTFE/Al 复合材料冲击反应阈值 [J]. 爆炸与冲击, 2018, 38(1): 1–8. DOI: 10.11883/bzycj-2017-0030.

    GE Chao, MAIMAITITUERSUN Wubuliaisan, TIAN Chao, et al. Impact-induced initiation thresholds of polytetrafluoroethylene/Al composite by gas gun [J]. Explosion and Shock Waves, 2018, 38(1): 1–8. DOI: 10.11883/bzycj-2017-0030.
    [6] ZHANG X F, ZHANG J, QIAO L, et al. Experimental study of the compression properties of Al/W/PTFE granular composites under elevated strain rates [J]. Material Science and Engineering: A, 2013, 581(10): 48–55. DOI: 10.1016/j.msea.2013.05.063.
    [7] WANG Liu, LIU Jinxu, LI Shukui, et al. Investigation on reaction energy, mechanical behavior and impact insensitivity of W/PTFE/Al composites with different W percentage [J]. Materials and Design, 2016, 92(5): 397–404. DOI: 10.1016/j.matdes.2015.12.045.
    [8] 徐松林, 阳世清, 张炜, 等. PTFE/Al含能复合物的本构关系 [J]. 爆炸与冲击, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06.

    XU Songlin, YANG Shiqing, ZHANG Wei, et al. A constitutive relation for a pressed PTFE/Al energetic composite material [J]. Explosion and Shock Waves, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06.
    [9] 任会兰, 李蔚, 刘晓俊, 等. 钨颗粒增强铝/聚四氟乙烯材料的冲击反应特性 [J]. 兵工学报, 2016, 37(5): 872–878. DOI: 10.3969/j.issn.1000-1093.2016.05.014.

    REN Huilan, LI Wei, LIU Xiaojun, et al. Reaction behaviors of Al/PTFE materials enhanced by W particles [J]. Acta Armamentarii, 2016, 37(5): 872–878. DOI: 10.3969/j.issn.1000-1093.2016.05.014.
    [10] 周杰, 何勇, 何源, 等. Al/PTFE/W反应材料的准静态压缩性能与冲击释能特性 [J]. 含能材料, 2017, 25(11): 903–912. DOI: 10.11943/j.issn.1006-9941.2017.11.004.

    ZHOU Jie, HE Yong, HE Yuan, et al. Quasi-static compression and impact energy release characteristics of reactive materials [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 903–912. DOI: 10.11943/j.issn.1006-9941.2017.11.004.
    [11] 乌布力艾散·麦麦提图尔荪, 葛超, 董永香, 等. SHPB 加载下 PTFE/Al冲击反应的临界条件 [J]. 爆炸与冲击, 2018, 38(5): 957–965. DOI: 10.11883/bzycj-2017-0075.

    MAIMAITITUERSUN Wubuliaisan, GE Chao, DONG Yongxiang, et al. Research on the impact-induced initiation criteria of PTFE/Al by split Hopkinson pressure bar [J]. Explosion and Shock Waves, 2018, 38(5): 957–965. DOI: 10.11883/bzycj-2017-0075.
    [12] FENG B, LI Y C, WU S Z, et al. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors [J]. Materials and Design, 2016, 108: 411–417. DOI: 10.1016/j.matdes.2016.06.125.
    [13] ZHANG Xinbo, LIU Jinxu, WANG Liu, et al. Effects of Al and W particle size on combustion characteristics and dynamic response of W-PTFE-Al composites [J]. Rare Metal Materials and Engineering, 2018, 47(6): 1723–1728. DOI: 10.1016/S1875-5372(18)30156-5.
    [14] GE C, DONG Y X, MAIMAITITUERSUN W. Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures [J]. Materials, 2016, 9(7): 590–605. DOI: 10.3390/ma9070590.
    [15] HUNT E M, MALCOLM S, PANTOYA M L, et al. Impact ignition of nano and micron composite energetic materials [J]. International Journal of Impact Engineering, 2009, 36(6): 842–846. DOI: 10.1016/j.ijimpeng.2008.11.011.
    [16] 李辰芳. 用氢化钛提高固体推进剂燃速的研究 [J]. 飞航导弹, 1997, 9(6): 34–37. DOI: 10.16338/j.issn.1009-1319.1997.06.009.
    [17] 薛冰, 马宏昊, 陈伟, 等. RDX基钛氢复合炸药空中爆炸性能 [J]. 含能材料, 2015, 23(11): 1046–1050. DOI: 10.11943/j.issn.1006-9941.2015.11.002.

    XUE Bing, MA Honghao, CHEN Wei, et al. Air explosion property of RDX-based titanium hydride composite explosive [J]. Chinese Journal of Energetic Materials, 2015, 23(11): 1046–1050. DOI: 10.11943/j.issn.1006-9941.2015.11.002.
    [18] COLLINS L W. The stability and compatibility of TiHx/KClO4 pyrotechnics [J]. Journal Hazardous Materials, 1982, 5(4): 325–333. DOI: 10.1016/0304-3894(82)85021-8.
    [19] COLLINS L W. Thermal ignition of titanium based pyrotechnics [J]. Combustion and Flame, 1981, 41(3): 325–330. DOI: 10.1016/0010-2180(81)90066-3.
    [20] 于钟深, 方向, 高振儒, 等. TiH2含量对Al/PTFE准静态压缩力学性能和反应特性的影响 [J]. 含能材料, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.

    YU Zhongshen, FANG Xiang, GAO Zhenru, et al. Effect of TiH2 content on mechanical properties and reaction characteristics of Al/PTFE under quasi-static compression [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.
    [21] 王爱玉, 阮庆云, 陈海云, 等. 炸药实验方法: GJB772A-97 [S]. 北京: 国防科学技术工业委员会, 1997.
    [22] YU Zhongshen, FIANG Xiang, GAO Zhenru, et al. Mechanical and reaction properties of Al/TiH2/PTFE under quasi-static compression [J]. Advanced Engineering Materials, 2018, 20: 1800019. DOI: 10.1002/adem.201800019.
    [23] AMES R. Energy release characteristics of impact-initiated energetic materials [C] // MRS Proceedings, 2005, 896(3): 321−333. DOI: 10.1557/PROC-0896-H03-08.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  5676
  • HTML全文浏览量:  1576
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-14
  • 修回日期:  2018-10-16
  • 网络出版日期:  2019-08-25
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回