Experimental study on explosion pressure variation law of coal dust with different degrees of metamorphism
-
摘要: 为研究不同变质程度煤尘爆炸压力特性变化规律,以最大压力pmax和最大压力上升速率(dp/dt)max表征压力特性,使用近球形煤尘爆炸装置对褐煤、长焰煤、不黏煤和气煤的爆炸压力特性变化规律展开分析。研究发现:在4种煤尘样品中,褐煤的pmax和(dp/dt)max均最大,分别达0.71 MPa和65.69 MPa/s。随变质程度增大,长焰煤、不黏煤和气煤的pmax和(dp/dt)max均明显减小,说明以爆炸压力特性为标准,4种煤尘爆炸强度由高到低依次是褐煤、长焰煤、不黏煤和气煤。通过对比爆炸前后煤尘挥发分含量,得出参与爆炸的挥发分含量所占质量分数为46.28%~68.19%。在喷尘压力p0=2.0 MPa,点火延迟时间t0=100 ms时,4种煤尘pmax值均达最大,分别为0.71、0.60、0.55和0.47 MPa。褐煤、不黏煤和气煤在p0=2.0 MPa,t0=80 ms时(dp/dt)max达最大,而长焰煤则在p0=2.0 MPa,t0=100 ms时(dp/dt)max达到最大。Abstract: In order to study the variation law of coal dust explosion pressure with different metamorphic degrees, the maximum pressure pmax and maximum pressure rise rate (dp/dt)max are characterized. The variation of explosion pressure characteristics of lignite, long flame coal, non-coking coal and gas coal is investigated by using a near-spherical coal dust explosion device. It is found that, among the selected coal dust samples, lignite has the largest pmax and (dp/dt)max, up to 0.71 MPa and 65.69 MPa/s, respectively. With the increase of metamorphism, the pmax and (dp/dt)max of long-flame coal, non-coking coal and gas coal are significantly reduced. Characterizing the explosion intensity by the explosion pressure characteristics, the four coal dust explosion strengths are then ranked from lignite, long flame coal, non-coking coal to gas coal. By comparing the volatile matter content of coal dust before and after the explosion, it is concluded that the proportion of volatile matter involved in the explosion is 46.28%−68.19%. At dispersion pressure p0=2.0 MPa and ignition delay time t0=100 ms, the pmax values of the four types of coal dust reach the maximum 0.71, 0.60, 0.55 and 0.47 MPa, respectively. However, lignite, non-viscous coal and gas coal have the highest (dp/dt)max at p0=2.0 MPa and t0=80 ms, while long-flame coal reaches the maximum (dp/dt)max at p0=2.0 MPa and t0=100 ms. The results are of significance for mastering explosion pressure characteristics under different test conditions.
-
表 1 不同煤质煤尘爆炸压力特性测试数据
Table 1. Explosion pressure charateristics of coal dust with different metamorphism
煤质 爆炸压力特性 煤质 爆炸压力特性 pmax/MPa (dp/dt)max/(MPa·s−1) pmax/MPa (dp/dt)max/(MPa·s−1) 褐煤 0.71 65.69 不黏煤 0.55 42.27 长焰煤 0.60 46.13 气煤 0.47 32.26 表 2 爆炸前后不同煤质煤尘挥发分含量对比
Table 2. Comparison of volatile content among coal samples with different metamorphisms before and after explosion
煤质 挥发分含量/% 参与爆炸比例/% 煤质 挥发分含量/% 参与爆炸比例/% 爆炸前 爆炸后 爆炸前 爆炸后 褐煤 36.88 11.73 68.19 不黏煤 30.27 16.26 46.28 长焰煤 32.55 16.16 58.33 气煤 35.26 18.46 47.65 表 3 不同实验工况下煤尘爆炸最大压力
Table 3. Maximum pressure of coal dust explosion under different test conditions
煤质种类 p0/MPa pmax/MPa t0=60 ms t0=80 ms t0=100 ms t0=120 ms 褐煤 1.8 0.31 0.58 0.64 0.51 2.0 0.42 0.65 0.71 0.66 2.2 0.40 0.61 0.66 0.50 长焰煤 1.8 0.35 0.45 0.52 0.49 2.0 0.43 0.55 0.60 0.54 2.2 0.39 0.49 0.55 0.46 不黏煤 1.8 0.22 0.30 0.49 0.36 2.0 0.29 0.41 0.55 0.44 2.2 0.25 0.36 0.52 0.41 气煤 1.8 0.14 0.27 0.37 0.29 2.0 0.21 0.34 0.47 0.36 2.2 0.16 0.28 0.41 0.32 表 4 不同实验工况下煤尘爆炸最大压力上升速率
Table 4. Maximum pressure rise rate of coal dust explosion under different test conditions
煤质种类 p0/MPa (dp/dt)max/(MPa·s−1) t0=60 ms t0=80 ms t0=100 ms t0=120 ms 褐煤 1.8 49.75 60.11 58.24 52.07 2.0 52.87 67.81 65.69 61.22 2.2 48.17 63.21 61.10 55.87 长焰煤 1.8 25.22 36.80 41.94 33.26 2.0 32.36 45.29 46.13 39.46 2.2 29.54 39.79 44.75 36.72 不黏煤 1.8 23.47 40.83 30.29 24.07 2.0 33.21 45.03 42.27 34.17 2.2 29.16 41.36 38.69 27.65 气煤 1.8 18.64 31.98 26.28 19.86 2.0 23.55 37.29 32.26 25.81 2.2 20.77 33.94 29.83 23.90 -
[1] 金龙哲. 矿井粉尘防治理论 [M]. 北京: 科学出版社, 2010: 17−28. [2] 毕明树. 气体和粉尘爆炸防治工程学 [M]. 北京: 化学工业出版社, 2012: 19−32. [3] 景国勋, 杨书召. 煤尘爆炸传播特性的实验研究 [J]. 煤炭学报, 2010, 35(4): 605–608. DOI: 10.13225/j.cnki.jccs.2010.04.023.JING Guoxun, YANG Shuzhao. Experimental study on flame propagation characteristic of coal dust explosion [J]. Journal of China Coal Society, 2010, 35(4): 605–608. DOI: 10.13225/j.cnki.jccs.2010.04.023. [4] 程卫民. 矿井粉尘防治理论与技术 [M]. 北京: 煤炭工业出版社, 2016: 9−21. [5] 宁建国, 王成, 马天宝. 爆炸与冲击动力学 [M]. 北京: 国防工业出版社, 2010: 31−37. [6] 司荣军. 矿井瓦斯煤尘爆炸传播规律研究 [D]. 青岛: 山东科技大学, 2007: 8−21. [7] ECKHOFF R K. Understanding dust explosions: the role of powder science and technology [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 105–116. DOI: 10.2514/6.1993-427. [8] 蔡周全, 罗振敏, 程方明. 瓦斯煤尘爆炸传播特性的实验研究 [J]. 煤炭学报, 2009, 34(7): 938–941. DOI: 10.13225/j.cnki.jccs.2009.07.020.CAI Zhouquan, LUO Zhenmin, CHENG Fangming. Experimental study on propagation characteristic of gas and coal dust explosion [J]. Journal of China Coal Society, 2009, 34(7): 938–941. DOI: 10.13225/j.cnki.jccs.2009.07.020. [9] 刘贞堂. 瓦斯煤尘爆炸物证特性参数实验研究 [D]. 北京: 中国矿业大学, 2010: 12−31. [10] 司荣军. 矿井瓦斯煤尘爆炸传播规律研究 [D]. 青岛: 山东科技大学, 2007: 19−25. [11] 刘义, 孙金华, 陈东梁. 甲烷-煤尘复合体系中煤尘爆炸下限的实验研究 [J]. 安全与环境学报, 2007, 7(4): 129–131. DOI: 10.3969/j.issn.1009-6094.2007.04.033.LIU Yi, SUN Jinhua, CHEN Dongliang. Experimental study on the lower limit of coal dust explosion in methane-coal dust composite system [J]. Journal of Safety and Environment, 2007, 7(4): 129–131. DOI: 10.3969/j.issn.1009-6094.2007.04.033. [12] 曹卫国, 徐森, 梁济元. 煤粉爆炸过程中火焰的传播特性 [J]. 爆炸与冲击, 2014, 34(5): 586–593. DOI: 10.11883/1001-1455(2014)05-0586-08.CAO Weiguo, XU Sen, LIANG Jiyuan. Flame propagation characteristic of coal dust explosion [J]. Explosion and Shock Waves, 2014, 34(5): 586–593. DOI: 10.11883/1001-1455(2014)05-0586-08. [13] 程磊. 受限空间煤尘爆炸冲击波传播衰减规律研究 [D]. 焦作: 河南理工大学, 2011: 41−56. [14] 煤炭工业部煤炭科学研究总院. 粉尘云最大爆炸压力和最大压力上升速率测定方法: GBTT 16426-1996 [S]. 北京: 中国煤炭工业部, 1996.