稀土金属材料填充方式对预混气体爆炸特性抑制研究

赵齐 陈先锋 代华明 尹姝慧 王晓彤 张洪铭 黄楚原

赵齐, 陈先锋, 代华明, 尹姝慧, 王晓彤, 张洪铭, 黄楚原. 稀土金属材料填充方式对预混气体爆炸特性抑制研究[J]. 爆炸与冲击, 2019, 39(11): 115404. doi: 10.11883/bzycj-2018-0276
引用本文: 赵齐, 陈先锋, 代华明, 尹姝慧, 王晓彤, 张洪铭, 黄楚原. 稀土金属材料填充方式对预混气体爆炸特性抑制研究[J]. 爆炸与冲击, 2019, 39(11): 115404. doi: 10.11883/bzycj-2018-0276
ZHAO Qi, CHEN Xianfeng, DAI Huaming, YIN Shuhui, WANG Xiaotong, ZHANG Hongming, HUANG Chuyuan. Inhibition of explosion characteristic of premixed gases by filling patterns of rare earth metal materials[J]. Explosion And Shock Waves, 2019, 39(11): 115404. doi: 10.11883/bzycj-2018-0276
Citation: ZHAO Qi, CHEN Xianfeng, DAI Huaming, YIN Shuhui, WANG Xiaotong, ZHANG Hongming, HUANG Chuyuan. Inhibition of explosion characteristic of premixed gases by filling patterns of rare earth metal materials[J]. Explosion And Shock Waves, 2019, 39(11): 115404. doi: 10.11883/bzycj-2018-0276

稀土金属材料填充方式对预混气体爆炸特性抑制研究

doi: 10.11883/bzycj-2018-0276
基金项目: 国家重点研发计划(2018YFC0808504,2017YFC0804705);国家自然科学基金(51774221,51804237);湖北省自然科学基金(2018CFB207)
详细信息
    作者简介:

    赵 齐(1992- ),男,硕士研究生,445912007@qq.com

    通讯作者:

    陈先锋(1975- ),男,博士,教授,cxf618@whut.edu.cn

    代华明(1987- ),男,博士,讲师,daihm@whut.edu.cn

  • 中图分类号: O381

Inhibition of explosion characteristic of premixed gases by filling patterns of rare earth metal materials

  • 摘要: 利用20 L球形爆炸装置,探究了在多孔稀土金属材料两种不同的填充方式(球状和片状)下甲烷-空气预混气体爆炸特性的变化规律,考虑了留空率和填充密度对预混气体爆炸特性的影响,并利用压力传感器记录球体内爆炸压力曲线。研究结果表明:甲烷爆炸压力、最大压力上升速率和爆炸指数均与留空率呈正比例关系,与填充密度呈反比例关系,片状材料下最大压力下降幅度大于球状材料下的;片状材料抑爆性能优于球状材料的,片状材料的双重抑爆作用对爆炸威力的影响更甚;2种不同填充方式下阻火抑爆的主要机理存在差异。
  • 图  1  实验材料及填充方式

    Figure  1.  Experimental materials and filling patterns

    图  2  20 L球形爆炸装置示意图

    Figure  2.  Schematic diagram for the 20 L spherical explosive device

    图  3  填充示意俯视图

    Figure  3.  Schematic top view of filling

    图  4  不同留空率下甲烷爆炸压力曲线

    Figure  4.  Pressure-time curves of methane explosion at different blank rates for two filling patterns

    图  5  不同填充密度下甲烷爆炸压力随时间的变化曲线

    Figure  5.  Pressure-time curves of methane explosion at different packed densities

    图  6  不同留空率下甲烷爆炸特性参数

    Figure  6.  Parameters for methane explosion characteristics at different blank rates

    图  7  不同填充密度下甲烷爆炸特性参数

    Figure  7.  Parameters for methane explosion characteristics at different packed densities

    图  8  不同填充方式下多孔材料的阻火抑爆机理

    Figure  8.  Mechanism of fire retardation and explosion suppression by porous materials in different filling patterns

  • [1] 刘洋, 高文傲, 李登科, 等. 基于光纤传感技术的易燃易爆气体泄漏监测研究 [J]. 爆破, 2017, 34(4): 22–26. DOI: 10.3963/j.issn.1001-487X.2017.04.005.

    LIU Yang, GAO Wenao, LI Dengke, et al. Research on leakage monitoring of flammable and explosive gas based on optical fiber sensing technology [J]. Blasting, 2017, 34(4): 22–26. DOI: 10.3963/j.issn.1001-487X.2017.04.005.
    [2] LIU Hongyong, HE Weitao, GUO Ji, et al. Risk propagation mechanism: Qingdao crude oil leaking and explosion case study [J]. Engineering Failure Analysis, 2015, 56: 555–561. DOI: 10.1016/j.engfailanal.2014.10.003.
    [3] CHEN C H, SHEEN Y N, WANG H Y. Case analysis of catastrophic underground pipeline gas explosion in Taiwan [J]. Engineering Failure Analysis, 2016, 65: 39–47. DOI: 10.1016/j.engfailanal.2016.03.013.
    [4] JI Tingchao, QIAN Xinming, YUAN Mengqi, et al. Case study of a natural gas explosion in Beijing, China [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 401–410. DOI: 10.1016/j.jlp.2017.07.013.
    [5] LI Qingzhao, LIN Baiquan, DAI Huaming, et al. Explosion characteristics of H2/CH4/air and CH4/coal dust/air mixtures [J]. Powder Technology, 2012, 229: 222–228. DOI: 10.1016/j.powtec.2012.06.036.
    [6] WANG Cheng, MA Tianbao, LU Jie. Influence of obstacle disturbance in a duct on explosion characteristics of coal gas [J]. Science China: Physics, Mechanics and Astronomy, 2010, 53(2): 269–278. DOI: 10.1007/s11433-009-0270-3.
    [7] HUO Y, CHOW W K. Flame propagation of premixed liquefied petroleum gas explosion in a tube [J]. Applied Thermal Engineering, 2016, 113: 891–901. DOI: 10.1016/j.applthermaleng.2016.11.040.
    [8] CICCARELLI G, JOHANSEN C T, PARRAVANI M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel [J]. Combustion and Flame, 2010, 157(11): 2125–2136. DOI: 10.1016/j.combustflame.2010.05.003.
    [9] YU Minggao, ZHENG Kai, CHU Tingxiang. Gas explosion flame propagation over various hollow-square obstacles [J]. Journal of Natural Gas Science and Engineering, 2016, 30: 221–227. DOI: 10.1016/j.jngse.2016.02.009.
    [10] DAI Huaming, ZHAO Qi, LIN Baiquan, et al. Premixed combustion of low-concentration coal mine methane with water vapor addition in a two-section porous media burner [J]. Fuel, 2018, 213: 72–82. DOI: 10.1016/j.fuel.2017.09.123.
    [11] 喻健良, 蔡涛, 李岳, 等. 丝网结构对爆炸气体淬熄的试验研究 [J]. 燃烧科学与技术, 2008, 14(2): 97–100. DOI: 10.3321/j.issn:1006-8740.2008.02.001.

    YU Jianliang, CAI Tao, LI Yue, et al. Experiment to quench explosion gas with structure of wire mesh [J]. Journal of Combustion Science and Technology, 2008, 14(2): 97–100. DOI: 10.3321/j.issn:1006-8740.2008.02.001.
    [12] BABKIN V S, KORZHAVIN A A, BUNEV V A. Propagation of premixed gaseous explosion flames in porous media [J]. Combustion and Flame, 1991, 87(2): 182–190. DOI: 10.1016/0010-2180(91)90168-B.
    [13] NIE Baisheng, HE Xueqiu, ZHANG Ruming, et al. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation [J]. Journal of Hazardous Materials, 2011, 192(2): 741–747. DOI: 10.1016/j.jhazmat.2011.05.083.
    [14] PANG Lei, WANG Chenxu, HAN Mengxing, et al. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy [J]. Journal of Hazardous Materials, 2015, 299: 174–180. DOI: 10.1016/j.jhazmat.2015.06.027.
    [15] LV Pengfei, PANG Lei, JIN Jianghong, et al. Effects of hydrogen addition on the deflagration characteristics of hydrocarbon fuel/air mixture under a mesh aluminum alloy [J]. International Journal of Hydrogen Energy, 2016, 41(18): 7511–7517. DOI: 10.1016/j.ijhydene.2016.03.084.
    [16] 杨杰, 肖述锋. 稀土铝镁合金阻隔防爆材料: 102747257B [P]. 2016-03-02.
    [17] 邢志祥, 张贻国, 马国良. 网状铝合金抑爆材料抑爆性能研究 [J]. 中国安全科学学报, 2012, 22(2): 75–80. DOI: 10.16265/j.cnki.issn1003-3033.2012.02.025.

    XING Zhixiang, ZHANG Yiguo, MA Guoliang. Research on explosion suppression performance of reticulate aluminum alloy explosion suppression material [J]. China Safety Science Journal, 2012, 22(2): 75–80. DOI: 10.16265/j.cnki.issn1003-3033.2012.02.025.
    [18] WANG Cheng, HUANG Fenglei, ADDAI E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302–310. DOI: 10.1016/j.jlp.2016.05.021.
    [19] RALLIS C J, GARFORTH A M. The determination of laminar burning velocity [J]. Progress in Energy and Combustion Science, 1980, 6(4): 303–329. DOI: 10.1016/0360-1285(80)90008-8.
  • 加载中
图(8)
计量
  • 文章访问数:  5805
  • HTML全文浏览量:  1449
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-29
  • 修回日期:  2018-09-28
  • 网络出版日期:  2019-10-25
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回