带制退器的膛口射流噪声数值模拟与实验研究

赵欣怡 周克栋 赫雷 陆野 王佳

赵欣怡, 周克栋, 赫雷, 陆野, 王佳. 带制退器的膛口射流噪声数值模拟与实验研究[J]. 爆炸与冲击, 2019, 39(10): 103201. doi: 10.11883/bzycj-2018-0279
引用本文: 赵欣怡, 周克栋, 赫雷, 陆野, 王佳. 带制退器的膛口射流噪声数值模拟与实验研究[J]. 爆炸与冲击, 2019, 39(10): 103201. doi: 10.11883/bzycj-2018-0279
ZHAO Xinyi, ZHOU Kedong, HE Lei, LU Ye, WANG Jia. Numerical simulation and experimental study on jet noise from a small caliber rifle with a muzzle brake[J]. Explosion And Shock Waves, 2019, 39(10): 103201. doi: 10.11883/bzycj-2018-0279
Citation: ZHAO Xinyi, ZHOU Kedong, HE Lei, LU Ye, WANG Jia. Numerical simulation and experimental study on jet noise from a small caliber rifle with a muzzle brake[J]. Explosion And Shock Waves, 2019, 39(10): 103201. doi: 10.11883/bzycj-2018-0279

带制退器的膛口射流噪声数值模拟与实验研究

doi: 10.11883/bzycj-2018-0279
基金项目: 联合基金(6141B02040208)
详细信息
    作者简介:

    赵欣怡(1991- ),女,博士研究生,x.zhao@njust.edu.cn

    通讯作者:

    周克栋(1964- ),男,博士,教授,博士生导师,zkd81151@126.com

  • 中图分类号: O389; TB533

Numerical simulation and experimental study on jet noise from a small caliber rifle with a muzzle brake

  • 摘要: 为了研究膛口装置对膛口噪声气动特性的影响,对带膛口制退器的某小口径武器的膛口射流噪声进行了数值模拟和实验研究。采用计算流体力学CFD (computational fluid dynamics)-计算气动声学CAA (computational aeroacoustics)耦合算法对膛口噪声进行数值模拟,即对膛口流场进行瞬态CFD模拟,获取流场数据,然后利用所得到的结果采用声学方程模拟声源信息求解声场。基于数值模拟结果,分析了膛口流场变化及噪声的指向性分布,并与实验结果进行了对比。研究表明:膛口制退器的安装改变了膛口流场结构,影响了膛口射流噪声的指向性分布。计算结果与实验结果的误差小于9%,验证了该计算方法的可行性。研究结果可为膛口射流噪声的预测及膛口制退器的设计提供一定的参考。
  • 图  1  计算区域示意图及边界条件

    Figure  1.  Schematic diagram of computational domain and boundary condition

    图  2  初始条件

    Figure  2.  Initial conditions

    图  3  膛口制退器示意图

    Figure  3.  Schematic diagram of muzzle brake

    图  4  计算区域网格划分

    Figure  4.  Grid model of computational domain

    图  5  声监测点俯视示意图

    Figure  5.  Top schematic diagram of receiver locations

    图  6  实验方案示意图

    Figure  6.  Schematic diagram of experimental scheme

    图  7  膛口位置测点分布图

    Figure  7.  Layout of measurement points in the far field

    图  8  实验现场

    Figure  8.  Photos of experimental field

    图  9  t=0.5 ms时膛口制退器截面流线分布

    Figure  9.  Streamlines in muzzle brake at t=0.5 ms

    图  10  压力等值线(上半部分)和密度等值线(下半部分)

    Figure  10.  Pressure contours in the upper half and density contours in the lower half

    图  11  射流噪声总声压级指向分布

    Figure  11.  Directional distribution of overall sound pressure level (OASPL) of jet noise

    图  12  测点压力波形

    1. Initial shock wave; 2. Muzzle blast; 3. Noise wave

    Figure  12.  Pressure-time curves at measurement points

    表  1  噪声总声压级的实测数据平均值

    Table  1.   Average of measured data for overall sound pressure level

    测点测点位置Loasp/dB测点测点位置Loasp/dB测点测点位置Loasp/dB
    r/mθ/(°)r/mθ/(°)r/mθ/(°)
    P11.090126.26P51.045131.73P91.00132.77
    P21.590124.83P61.545130.18P101.50131.01
    P32.090123.34P72.045128.65P112.00130.08
    P42.590121.82P82.545125.60P122.50128.64
    下载: 导出CSV

    表  2  总声压级计算结果与实验结果的对比

    Table  2.   Comparison between calculated and experimental overall sound pressure levels

    测点(θ=90°)Loasp/dB误差/%测点(θ=45°)Loasp/dB误差/%测点(θ=0°)Loasp/dB误差/%
    实验计算实验计算实验计算
    P1126.26128.72−1.9P5131.73128.962.1P9132.77125.895.2
    P2124.83126.01−0.9P6130.18124.514.4P10131.01121.577.2
    P3123.34123.65−0.3P7128.65121.875.3P11130.08119.238.3
    P4121.82121.47 0.3P8125.60119.444.9P12128.64117.848.4
    下载: 导出CSV
  • [1] BOGEY C, MARSDEN O, BAILLY C. Effects of moderate Reynolds numbers on subsonic round jets with highly disturbed nozzle-exit boundary layers [J]. Physics of Fluids, 2012, 24(10): 53. DOI: 10.1063/1.4757667.
    [2] BOGEY C, MARSDEN O, BAILLY C. Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105 [J]. Journal of Fluid Mechanics, 2012, 701(6): 352–385. DOI: 10.1017/jfm.2012.162.
    [3] WAN Zhenhua, ZHOU Lin, YANG Haihua, et al. Large eddy simulation of flow development and noise generation of free and swirling jets [J]. Physics of Fluids, 2013, 25(12): 564–587. DOI: 10.1063/1.4833215.
    [4] WAN Zhenhua, ZHOU Lin, SUN Dejun. A study on large coherent structures and noise emission in a turbulent round jet [J]. Science China: Physics, Mechanics and Astronomy, 2014, 57(8): 1552–1562. DOI: 10.1007/s11433-013-5291-2.
    [5] BRÈS G A, JAUNET V, RALLIC M L, et al. Large eddy simulation for jet noise: the importance of getting the boundary layer right [C] // Proceedings of 21st AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics Inc, 2015. DOI: 10.2514/6.2015-2535.
    [6] LORTEAU M, CLÉRO F, VUILLOT F. Analysis of noise radiation mechanisms in hot subsonic jet from a validated large eddy simulation solution [J]. Physics of Fluids, 2015, 27(7). DOI: 10.1063/1.4926792.
    [7] BIN J, KIM M, LEE S. A numerical study on the generation of impulsive noise by complex flows discharging from a muzzle [J]. International Journal for Numerical Methods in Engineering, 2010, 75(8): 964–991.
    [8] LEE I C, LEE D J, KO S H, et al. Numerical analysis of a blast wave using CFD-CAA hybrid method [C]// Proceedings of 12th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics, Inc., 2006. DOI: 10.2514/6.2006-2701.
    [9] REHMAN H, HWANG S H, FAJAR B, et al. Analysis and attenuation of impulsive sound pressure in large caliber weapon during muzzle blast [J]. Journal of Mechanical Science and Technology, 2011, 25(10): 2601–2606. DOI: 10.1007/s12206-011-0731-2.
    [10] 王杨, 姜孝海, 杨绪普, 等. 小口径膛口射流噪声的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 508–512. DOI: 10.11883/1001-1455(2014)04-0508-05.

    WANG Yang, JIANG Xiaohai, YANG Xupu, et al. Numerical simulation on jet noise induced by complex flows discharging from small caliber muzzle [J]. Explosion and Shock Waves, 2014, 34(4): 508–512. DOI: 10.11883/1001-1455(2014)04-0508-05.
    [11] 路宽, 赵俊利, 雷红霞, 等. 高温高压大口径火炮膛口噪声场分布特性研究 [J]. 河北农机, 2014(1): 59–60. DOI: 10.3969/j.issn.1002-1655.2014.01.030.

    LU Kuan, ZHAO Junli, LEI Hongxia, et al. Distribution characteristics of muzzle noise field of high temperature and high pressure large caliber guns [J]. Hebei Farm Machinery, 2014(1): 59–60. DOI: 10.3969/j.issn.1002-1655.2014.01.030.
    [12] LILLY D K. A proposed modification of the Germano subgrid-scale closure method [J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(3): 633–635. DOI: 10.1063/1.858280.
    [13] 王秉义. 枪口噪声的声源和物理特性 [J]. 兵工学报, 1987, 8(4): 1–9.

    WANG Bingyi. The sound source and physical characteristics of the muzzle noise [J]. Acta Armamentarii, 1987, 8(4): 1–9.
    [14] VEN T V D, LOUIS J, PALFREYMAN D, et al. Computational aeroacoustic analysis of a 1/4 scale G550 nose landing gear and comparison to NASA and UFL wind tunnel data [C] // Proceedings of 15th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics, Inc., 2006: 33−45. DOI: 10.2514/6.2009-3359.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  5734
  • HTML全文浏览量:  1447
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-08
  • 修回日期:  2018-11-05
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回