横向爆炸载荷下薄壁圆管的动态响应

于博丽 冯根柱 李世强 刘志芳

于博丽, 冯根柱, 李世强, 刘志芳. 横向爆炸载荷下薄壁圆管的动态响应[J]. 爆炸与冲击, 2019, 39(10): 103101. doi: 10.11883/bzycj-2018-0295
引用本文: 于博丽, 冯根柱, 李世强, 刘志芳. 横向爆炸载荷下薄壁圆管的动态响应[J]. 爆炸与冲击, 2019, 39(10): 103101. doi: 10.11883/bzycj-2018-0295
YU Boli, FENG Genzhu, LI Shiqiang, LIU Zhifang. Dynamic response of thin-wall circular tubes under transverse blast loading[J]. Explosion And Shock Waves, 2019, 39(10): 103101. doi: 10.11883/bzycj-2018-0295
Citation: YU Boli, FENG Genzhu, LI Shiqiang, LIU Zhifang. Dynamic response of thin-wall circular tubes under transverse blast loading[J]. Explosion And Shock Waves, 2019, 39(10): 103101. doi: 10.11883/bzycj-2018-0295

横向爆炸载荷下薄壁圆管的动态响应

doi: 10.11883/bzycj-2018-0295
基金项目: 国家自然科学基金(11772216,11602161)
详细信息
    作者简介:

    于博丽(1994- ),女,硕士研究生,964855831@qq.com

    通讯作者:

    刘志芳(1971- ),女,副教授,liuzhifang@tyut.edu.cn

  • 中图分类号: O347.3

Dynamic response of thin-wall circular tubes under transverse blast loading

  • 摘要: 采用实验研究、理论分析和有限元模拟相结合的方法,研究了横向爆炸载荷作用下薄壁圆管的动态响应。利用弹道冲击摆锤系统,对圆管在爆炸载荷下的动力响应进行了实验研究,分析了薄壁圆管的变形模式;基于地基梁模型,建立了横向爆炸载荷作用下圆管跨中挠度的理论模型,并进行了无量纲化;通过有限元模拟,分析了圆管的几何参数对其变形模式和跨中挠度的影响,并与理论结果进行了对比。研究结果表明:随着TNT药量增加圆管的变形区域和跨中挠度增大;圆管的长径比、厚度及爆炸载荷参数对圆管的变形模式有较大影响;理论预测、有限元模拟结果与实验结果吻合较好。
  • 图  1  冲击摆锤系统

    Figure  1.  Ballistic pendulum system

    图  2  圆管残余变形模式

    Figure  2.  Residual deformation modes of circular tubes

    图  3  爆炸载荷下的圆管几何模型

    Figure  3.  Geometry of circular tube under blast loading

    图  4  爆炸载荷下圆管刚塑性地基梁

    Figure  4.  Rigid-plastic beam-on-foundation of the circular tube under impact loading

    图  5  In=0.35时无量纲挠度-无量纲量$\eta $

    Figure  5.  Non-dimensional deflection andnon-dimensional quantity $\eta $ at In =0.35

    图  6  In=0.35时无量纲挠度-无量纲量$\lambda $

    Figure  6.  Non-dimensional deflection andnon-dimensional quantity $\lambda $ at In=0.35

    图  7  实验与数值模拟变形模式对比

    Figure  7.  Comparison of numerical deformation modes with experimental result

    图  8  圆管跨中挠度的对比

    Figure  8.  Comparison of mid-span deflection of the circular tube

    图  9  不同In下无量纲挠度的数值模拟与理论预测的对比

    Figure  9.  Comparison of non-dimensional deflection between numerical results and theoretical results at different values of In

    表  1  试件几何参数和实验冲量与理论冲量对比

    Table  1.   Geometrical parameters and comparison of the experimental and theoretical impulses

    试件D/mh/mw/mmW/g$\bar H$/(m·kg−1/3)ΔpΦ/(kg·cm−2)ΔpΦr/(kg·cm−2)p0/MPaIE/(N·s)IT/(N·s)[(IT-IE)/IE]/%
    890.9 5.5200.5522.7148.214.8 9.8 9.2−6.12
    890.829.1350.4634.0236.023.614.914.7−1.34
    760.826.8350.4634.0236.023.613.612.6−7.35
    760.729.5350.4634.0236.023.613.412.6−5.97
    下载: 导出CSV

    表  2  横向爆炸载荷下圆管跨中挠度

    Table  2.   Mid-span deflection circular tube under transverse blast loading

    D/mmh/mmp0/MPaw/mm
    TheoryFEAExperiment
    760.723.631.6834.2129.5
    760.823.624.1928.8426.8
    760.923.619.0622.86
    890.714.810.7214.19
    890.814.8 8.19 9.80
    890.914.8 6.46 7.355.5
    890.723.627.2538.34
    890.823.620.8329.2429.1
    890.923.616.4323.32
    下载: 导出CSV
  • [1] PAYTON R G. Transient interaction of an acoustic wave with a circular cylindrical elastic shell [J]. Journal of the Acoustical Society of America, 1959, 32(6): 722–729. DOI: 10.1121/1.1908197.
    [2] MENKES S B, OPAT H J. Broken beams [J]. Experimental Mechanics, 1973, 13(11): 480–486. DOI: 10.1007/BF02322734.
    [3] 杨桂通. 塑性动力学 [M]. 北京: 清华大学出版社, 1984.
    [4] WEGENER R B, MARTIN J B. Predictions of permanent deformation of impulsively loaded simply supported square tube steel beams [J]. International Journal of Mechanical Sciences, 1985, 27(1): 55–69. DOI: 10.1016/0020-7403(85)90066-9.
    [5] WIERZBICKI T. Damage assessment of cylinders due to impact and explosive loading [J]. International Journal of Impact Engineering, 1993, 13(2): 215–241. DOI: 10.1016/0734-743X(93)90094-N.
    [6] HOOFATT M, WIERZBICKI T. Damage of plastic cylinders under localized pressure loading [J]. International Journal of Mechanical Sciences, 1991, 33(12): 999–1016. DOI: 10.1016/0020-7403(91)90055-8.
    [7] YU T X, STRONGE W J. Large deflection of a rigid-plastic beam-on-foundation from impact [J]. International Journal of Impact Engineering, 1990, 9(1): 115–126. DOI: 10.1016/0734-743X(90)90025-Q.
    [8] YUEN S C K, NURICK G N, BRINCKMANN H B, et al. Response of cylindrical shells to lateral blast load [J]. International Journal of Protective Structures, 2013, 4(3): 209–230. DOI: 10.1260/2041-4196.4.3.209.
    [9] JAMA H H, NURICK G N, BAMBACH M R, et al. Steel square hollow sections subjected to transverse blast loads [J]. Thin-Walled Structures, 2012, 53: 109–122. DOI: 10.1016/j.tws.2012.01.007.
    [10] BAMBACH M R. Behavior and design of aluminum hollow sections subjected to transverse blast loads [J]. Steel Construction, 2008, 46(12): 1370–1381. DOI: 10.1016/j.tws.2008.03.010.
    [11] KARAGIOZOVA D, YU T X, LU G. Transverse blast loading of hollow beams with square cross-sections [J]. Thin-Walled Structures, 2013, 62(1): 169–178. DOI: 10.1016/j.tws.2012.09.004.
    [12] KARAGIOZOVA D, YU T X, LU G, et al. Response of a circular metallic hollow beam to an impulsive loading [J]. Thin-Walled Structures, 2014, 80: 80–90. DOI: 10.1016/j.tws.2014.02.021.
    [13] 李世强, 李鑫, 吴桂英, 等. 梯度蜂窝夹芯板在爆炸荷载作用下的动力响应 [J]. 爆炸与冲击, 2016, 36(3): 333–339. DOI: 10.11883/1001-1455(2016)03-0333-07.

    LI Shiqiang, LI Xin, WU Guiying, et al. Dynamic response of functionally graded honeycomb sandwich plates under blast loading [J]. Explosion and Shock Waves, 2016, 36(3): 333–339. DOI: 10.11883/1001-1455(2016)03-0333-07.
    [14] Cole R H, Weller R. Underwater explosions [J]. Physics Today, 1948, 1(6): 35–35. DOI: 10.1063/1.3066176.
    [15] KARAGIOZOVA D, NURICK G N, LANGDON G S. Behavior of sandwich panels subject to intense air blasts. Part 2: Numerical simulation [J]. Composite Structures, 2009, 91(4): 442–450. DOI: 10.1016/j.compstruct.2009.04.010.
    [16] HENRYCH J. The dynamics of explosion and its use [M]. Elsevier Scientific Publishing Company, 1979: 562. DOI: 10.1115/1.3153619.
    [17] MARTIN J B, SYMONDS P S. Mode approximations for impulsively loaded rigid plastic structures [J]. Journal of the Engineering Mechanics Division, 1966, 92(5): 43–66. DOI: 10.21236/ad0621580.
    [18] WALTERS R M, JONES N. An approximate theoretical study of the dynamic plastic behavior of shells [J]. International Journal of Non-Linear Mechanics, 1972, 7(3): 255–273. DOI: 10.1016/0020-7462(72)90049-2.
    [19] 余同希, 华云龙. 结构塑性动力学引论 [M]. 合肥: 中国科技大学出版社, 1994: 88−89.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  6184
  • HTML全文浏览量:  1456
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-08
  • 修回日期:  2018-12-27
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回