Dynamic response of thin-wall circular tubes under transverse blast loading
-
摘要: 采用实验研究、理论分析和有限元模拟相结合的方法,研究了横向爆炸载荷作用下薄壁圆管的动态响应。利用弹道冲击摆锤系统,对圆管在爆炸载荷下的动力响应进行了实验研究,分析了薄壁圆管的变形模式;基于地基梁模型,建立了横向爆炸载荷作用下圆管跨中挠度的理论模型,并进行了无量纲化;通过有限元模拟,分析了圆管的几何参数对其变形模式和跨中挠度的影响,并与理论结果进行了对比。研究结果表明:随着TNT药量增加圆管的变形区域和跨中挠度增大;圆管的长径比、厚度及爆炸载荷参数对圆管的变形模式有较大影响;理论预测、有限元模拟结果与实验结果吻合较好。Abstract: In this paper we investigated the dynamic response of thin-wall circular tubes under lateral blast loading based on experimental research, theoretical analysis and finite element simulation. We studied the dynamic responses of the tubes under explosion using the ballistic pendulum system and analyzed the deformation modes of the thin-wall tubes, and based on the foundation beam model, established a theoretical model of the mid-span deflection of the circular tube under lateral blast loading and made it dimensionless. We also analyzed the influence of the geometric parameters of the circular tube on its deformation mode and mid-span deflection using finite element simulation and compared it with the theoretical prediction. The results show that the deformed area and the mid-span deflection of the circular tube increase with the increase of the TNT mass. The length-to-diameter ratio, wall-thickness of the circular tube and the loading impulse all have a great influence on the mid-span deflection of the circular tube. The theoretical prediction and the numerical results are both in good agreement with the experimental results.
-
Key words:
- circular tube /
- blast loading /
- modal solution /
- beam-on-foundation /
- finite element
-
表 1 试件几何参数和实验冲量与理论冲量对比
Table 1. Geometrical parameters and comparison of the experimental and theoretical impulses
试件 D/m h/m w/mm W/g $\bar H$/(m·kg−1/3) ΔpΦ/(kg·cm−2) ΔpΦr/(kg·cm−2) p0/MPa IE/(N·s) IT/(N·s) [(IT-IE)/IE]/% Ⅰ 89 0.9 5.5 20 0.55 22.7 148.2 14.8 9.8 9.2 −6.12 Ⅱ 89 0.8 29.1 35 0.46 34.0 236.0 23.6 14.9 14.7 −1.34 Ⅲ 76 0.8 26.8 35 0.46 34.0 236.0 23.6 13.6 12.6 −7.35 Ⅳ 76 0.7 29.5 35 0.46 34.0 236.0 23.6 13.4 12.6 −5.97 表 2 横向爆炸载荷下圆管跨中挠度
Table 2. Mid-span deflection circular tube under transverse blast loading
D/mm h/mm p0/MPa w/mm Theory FEA Experiment 76 0.7 23.6 31.68 34.21 29.5 76 0.8 23.6 24.19 28.84 26.8 76 0.9 23.6 19.06 22.86 − 89 0.7 14.8 10.72 14.19 − 89 0.8 14.8 8.19 9.80 − 89 0.9 14.8 6.46 7.35 5.5 89 0.7 23.6 27.25 38.34 − 89 0.8 23.6 20.83 29.24 29.1 89 0.9 23.6 16.43 23.32 − -
[1] PAYTON R G. Transient interaction of an acoustic wave with a circular cylindrical elastic shell [J]. Journal of the Acoustical Society of America, 1959, 32(6): 722–729. DOI: 10.1121/1.1908197. [2] MENKES S B, OPAT H J. Broken beams [J]. Experimental Mechanics, 1973, 13(11): 480–486. DOI: 10.1007/BF02322734. [3] 杨桂通. 塑性动力学 [M]. 北京: 清华大学出版社, 1984. [4] WEGENER R B, MARTIN J B. Predictions of permanent deformation of impulsively loaded simply supported square tube steel beams [J]. International Journal of Mechanical Sciences, 1985, 27(1): 55–69. DOI: 10.1016/0020-7403(85)90066-9. [5] WIERZBICKI T. Damage assessment of cylinders due to impact and explosive loading [J]. International Journal of Impact Engineering, 1993, 13(2): 215–241. DOI: 10.1016/0734-743X(93)90094-N. [6] HOOFATT M, WIERZBICKI T. Damage of plastic cylinders under localized pressure loading [J]. International Journal of Mechanical Sciences, 1991, 33(12): 999–1016. DOI: 10.1016/0020-7403(91)90055-8. [7] YU T X, STRONGE W J. Large deflection of a rigid-plastic beam-on-foundation from impact [J]. International Journal of Impact Engineering, 1990, 9(1): 115–126. DOI: 10.1016/0734-743X(90)90025-Q. [8] YUEN S C K, NURICK G N, BRINCKMANN H B, et al. Response of cylindrical shells to lateral blast load [J]. International Journal of Protective Structures, 2013, 4(3): 209–230. DOI: 10.1260/2041-4196.4.3.209. [9] JAMA H H, NURICK G N, BAMBACH M R, et al. Steel square hollow sections subjected to transverse blast loads [J]. Thin-Walled Structures, 2012, 53: 109–122. DOI: 10.1016/j.tws.2012.01.007. [10] BAMBACH M R. Behavior and design of aluminum hollow sections subjected to transverse blast loads [J]. Steel Construction, 2008, 46(12): 1370–1381. DOI: 10.1016/j.tws.2008.03.010. [11] KARAGIOZOVA D, YU T X, LU G. Transverse blast loading of hollow beams with square cross-sections [J]. Thin-Walled Structures, 2013, 62(1): 169–178. DOI: 10.1016/j.tws.2012.09.004. [12] KARAGIOZOVA D, YU T X, LU G, et al. Response of a circular metallic hollow beam to an impulsive loading [J]. Thin-Walled Structures, 2014, 80: 80–90. DOI: 10.1016/j.tws.2014.02.021. [13] 李世强, 李鑫, 吴桂英, 等. 梯度蜂窝夹芯板在爆炸荷载作用下的动力响应 [J]. 爆炸与冲击, 2016, 36(3): 333–339. DOI: 10.11883/1001-1455(2016)03-0333-07.LI Shiqiang, LI Xin, WU Guiying, et al. Dynamic response of functionally graded honeycomb sandwich plates under blast loading [J]. Explosion and Shock Waves, 2016, 36(3): 333–339. DOI: 10.11883/1001-1455(2016)03-0333-07. [14] Cole R H, Weller R. Underwater explosions [J]. Physics Today, 1948, 1(6): 35–35. DOI: 10.1063/1.3066176. [15] KARAGIOZOVA D, NURICK G N, LANGDON G S. Behavior of sandwich panels subject to intense air blasts. Part 2: Numerical simulation [J]. Composite Structures, 2009, 91(4): 442–450. DOI: 10.1016/j.compstruct.2009.04.010. [16] HENRYCH J. The dynamics of explosion and its use [M]. Elsevier Scientific Publishing Company, 1979: 562. DOI: 10.1115/1.3153619. [17] MARTIN J B, SYMONDS P S. Mode approximations for impulsively loaded rigid plastic structures [J]. Journal of the Engineering Mechanics Division, 1966, 92(5): 43–66. DOI: 10.21236/ad0621580. [18] WALTERS R M, JONES N. An approximate theoretical study of the dynamic plastic behavior of shells [J]. International Journal of Non-Linear Mechanics, 1972, 7(3): 255–273. DOI: 10.1016/0020-7462(72)90049-2. [19] 余同希, 华云龙. 结构塑性动力学引论 [M]. 合肥: 中国科技大学出版社, 1994: 88−89.