Numerical simulation on characteristics of impinging air flow propagationand CO formation in lignite explosion
-
摘要: 为研究褐煤爆炸过程中冲击气流传播特性及CO毒气生成特性,以水平管道煤尘爆炸实验装置为依托,按1∶1比例建立水平管道几何模型,在构建煤尘爆炸动力传播特性数学模型的基础上,展开冲击气流传播特性与CO生成特性模拟分析。结果表明:通过对比不同时刻褐煤爆炸火焰传播距离模拟值与实测值,验证了模拟方法的可靠性。以冲击气流传播速度模拟值划分空间区域,得到:z=0~0.1 m为初始扬尘区,z=0.1~0.42 m为冲击气流速度跃升区,z=0.42~0.98 m为冲击气流高速传播区,z=0.98~1.4 m为冲击气流缓冲区。z=0.2 m与z=0.4 m截面上距圆心越远,冲击气流传播速度越大,这是由流体流动的“壁面效应”导致的,壁面附近空隙率大于流体内部,流动时所受阻力比较小,因此出现冲击气流在近壁处流速较大的分布特征。模拟CO毒气产物生成特性发现,管内z=0.3~0.6 m为CO质量分数相对最高的空间范围,局部最高达到0.024%~0.026%。在z>0.7 m时,由于颗粒受重力作用,同时爆炸产生的高温气体受浮力作用,导致CO气体产物出现下沉的趋势。Abstract: In this paper we established a horizontal pipeline geometric model based on the horizontal pipeline coal dust explosion experimental device to study the characteristics of impinging airflow and CO gas generation during lignite explosion, and constructed the mathematical model of the coal-dust explosion dynamic propagation according to the 1∶1 ratio, with the characteristics of the airflow propagation and CO generation simulated. The results verified the reliability of the simulation by comparing the simulated and measured values of the lignite explosion flame propagation distance at different times. The spatial region is divided by the simulated velocity of the impinging airflow: z=0−0.10 m is the initial dusting zone, z=0.10−0.42 m is the impact airflow velocity jump zone, and z=0.42−0.98 m is the high velocity propagation zone of the impinging airflow. z=0.98−1.40 m is the impinging airflow buffer. The farther away from the centers of the z=0.20 m and z=0.40 m cross-sections, the greater the velocity of the impinging airflow, resulting from the " wall effect” of the fluid flow. The void ratio near the wall is larger than that in the inside of the fluid, and the resistance is weak when flowing. Therefore, the impinging airflow exhibits a relatively greater flow velocity near the wall. The simulation of the formation of CO gas products shows that z=0.30−0.60 m in the tube is the spatial range with the highest CO mass fraction, and the local maximum is 0.024%−0.026%. At z>0.70 m, the particles were subjected to the gravity, and the high-temperature gas generated by the explosion was subjected to the buoyancy, resulting in a tendency of the CO gas product to sink.
-
Key words:
- explosion of coal dust /
- impinging airflow /
- CO toxic gas product /
- lignite
-
表 1 不同时刻爆炸火焰传播距离
Table 1. Flame propagation distance of explosion at different time
时间 t/ms 火焰传播距离 l/cm 时间 t/ms 火焰传播距离 l/cm 0 0 625 60 125 47 750 41 250 60 875 15 375 65 1 000 0 500 74 表 2 人体在CO气体环境下的反应
Table 2. Human reactions under condition of CO
CO体积分数/% CO质量分数/% 人体反应 CO体积分数/% CO质量分数/% 人体反应 0.02 0.019 2~3 h:轻微头痛 0.16 0.155 1 h:四肢无力 0.04 0.039 1~2 h:眩晕 0.32 0.309 20 s:丧失知觉 0.08 0.077 45 s:耳鸣头痛 1.32 1.276 1~3 s:死亡 -
[1] 金龙哲.矿井粉尘防治理论[M]. 北京: 科学出版社, 2010: 33−35. [2] 景国勋, 杨书召. 煤尘爆炸传播特性的实验研究 [J]. 煤炭学报, 2010, 35(4): 605–608. DOI: 10.13225/j.cnki.jccs.2010. 04.023.JING Guoxun, YANG Shuzhao. Experimental study on flame propagation characteristic of coal dust explosion [J]. Journal of China Coal Society, 2010, 35(4): 605–608. DOI: 10.13225/j.cnki.jccs.2010. 04.023. [3] 毕明树.气体和粉尘爆炸防治工程学[M]. 北京: 化学工业出版社, 2012: 20−26. [4] ABBASI T, ABBASI S A. Dust explosion: cases, causes, consequences, and control [J]. Journal of Hazardous Materials, 2007, 140(1): 7–44. [5] ECKHOFF R K. Current status and expected future trends in dust explosion research [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(4): 225–237. [6] 司荣军.矿井瓦斯煤尘爆炸传播规律研究[D]. 青岛: 山东科技大学, 2007: 25−37; 1−25. [7] ECKHOFF R K. Understanding dust explosions: the role of powder science and technology [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 105–116. DOI: 10.1016/j.jlp.2008.07.006. [8] ELAINE O. Structure and flame speed of dilute and dense layered coal-dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 36(4): 214–222. [9] PAWEL K, ALEX H. An investigation of the consequences of primary dust explosions in interconnected vessels [J]. Journal of Hazardous Materials, 2006, 137(2): 752–761. DOI: 10.1016/j.jhazmat.2006.04.029. [10] 蔡周全, 罗振敏, 程方明. 瓦斯煤尘爆炸传播特性的实验研究 [J]. 煤炭学报, 2009, 34(7): 938–941. DOI: 10.3321/j.issn:0253-9993.2009.07.015.CAI Zhouquan, LUO Zhenmin, CHENG Fangming. Experimental study on propagation characteristic of gas and coal dust explosion [J]. Journal of China Coal Society, 2009, 34(7): 938–941. DOI: 10.3321/j.issn:0253-9993.2009.07.015. [11] 刘贞堂.瓦斯煤尘爆炸物证特性参数实验研究[D]. 北京: 中国矿业大学, 2010: 12-28. [12] 刘义, 孙金华, 陈东梁. 甲烷-煤尘复合体系中煤尘爆炸下限的实验研究 [J]. 安全与环境学报, 2007, 7(4): 129–131. DOI: 10.3969/j.issn.1009-6094.2007.04.033.LIU Yi, SUN Jinhua, CHEN Dongliang. Experimental study on the lower limit of coal dust explosion in methane-coal dust composite system [J]. Journal of Safety and Environment, 2007, 7(4): 129–131. DOI: 10.3969/j.issn.1009-6094.2007.04.033. [13] 曹卫国, 徐森, 梁济元. 煤粉爆炸过程中火焰的传播特性 [J]. 爆炸与冲击, 2014, 34(5): 586–593. DOI: 10.11883/1001-1455(2014)05-0586-08.CAO Weiguo, XU Sen, LIANG Jiyuan. Flame propagation characteristic of coal dust explosion [J]. Explosion and Shock Waves, 2014, 34(5): 586–593. DOI: 10.11883/1001-1455(2014)05-0586-08. [14] 程磊. 受限空间煤尘爆炸冲击波传播衰减规律研究[D]. 焦作: 河南理工大学, 2011: 41−49. [15] 周力行. 湍流两相流动与燃烧的数值模拟[M]. 北京: 清华大学出版社, 1991: 19−38. [16] FAUNDEZ J, ARENILLAS A, RUBIERA F. Ignition behavior of different rank coals in an entrained flow reactor [J]. Fuel, 2005, 84(17): 2172–2177. DOI: 10.1016/j.fuel.2005.03.028. [17] 刘建, 姚海飞, 金龙哲. 基于罗森-拉姆勒分布函数的粉尘分散度分析 [J]. 北京科技大学学报, 2010, 32(9): 1101–1106. DOI: 10.13374/j.issn1001-053x.2010.09.001.LIU Jian, YAO Haifei, JIN Longzhe. Dust dispersion analysis based on Rosen-Rammler distribution function [J]. Journal of Beijing University of Science and Technology, 2010, 32(9): 1101–1106. DOI: 10.13374/j.issn1001-053x.2010.09.001.