基于DIHPB技术的高应变率剪切测试方法

刘宇 许泽建 汤忠斌 张炜琪 黄风雷

刘宇, 许泽建, 汤忠斌, 张炜琪, 黄风雷. 基于DIHPB技术的高应变率剪切测试方法[J]. 爆炸与冲击, 2019, 39(10): 104101. doi: 10.11883/bzycj-2018-0301
引用本文: 刘宇, 许泽建, 汤忠斌, 张炜琪, 黄风雷. 基于DIHPB技术的高应变率剪切测试方法[J]. 爆炸与冲击, 2019, 39(10): 104101. doi: 10.11883/bzycj-2018-0301
LIU Yu, XU Zejian, TANG Zhongbin, ZHANG Weiqi, HUANG Fenglei. A high-strain-rate shear testing method based on the DIHPB technique[J]. Explosion And Shock Waves, 2019, 39(10): 104101. doi: 10.11883/bzycj-2018-0301
Citation: LIU Yu, XU Zejian, TANG Zhongbin, ZHANG Weiqi, HUANG Fenglei. A high-strain-rate shear testing method based on the DIHPB technique[J]. Explosion And Shock Waves, 2019, 39(10): 104101. doi: 10.11883/bzycj-2018-0301

基于DIHPB技术的高应变率剪切测试方法

doi: 10.11883/bzycj-2018-0301
基金项目: 国家自然科学基金(11772062,11302030);爆炸科学与技术国家重点实验室自主研究(YBKT17-03)
详细信息
    作者简介:

    刘 宇(1993- ),男,硕士研究生,752866923@qq.com

    通讯作者:

    许泽建(1979- ),男,博士,副教授,xuzejian@bit.edu.cn

  • 中图分类号: O347.4

A high-strain-rate shear testing method based on the DIHPB technique

  • 摘要: 在测试材料动态力学性能时,直接撞击式霍布金森压杆(direct impact Hopkinson pressure bar,DIHPB)实验系统相对于分离式霍布金森压杆(split Hopkinson pressure bar,SHPB),往往能获得更高的应变率。本文中采用一种新型双剪切试样,在DIHPB系统下对603钢进行了动态剪切测试。获得了603钢在应变率1 500~33 000 s−1的剪应力-剪应变曲线,并与SHPB系统下的测试结果进行了对比。结果表明,由两种测试方法获得的流动应力具有较好的一致性,但曲线的上升沿存在明显区别。采用数值模拟对DIHPB方法的准确性进行了验证,并对该实验方法的适用条件进行了分析。采用DIHPB方法,可以观察到603钢的流动应力存在明显的应变率效应,但在较高的加载速度下材料的失效应力随着加载速度的增加而呈降低趋势。
  • 图  1  新型双剪切试样及夹持装置示意图

    Figure  1.  Illustration of NDSS sample and fixture

    图  2  DIHPB系统实验原理图

    Figure  2.  Illustration of experimental system

    图  3  603钢实验前后的试样

    Figure  3.  Specimens of 603 steel before and after experiment

    图  4  不同加载速度下的透射应变曲线

    Figure  4.  Transmission strain curves of 603 steel at different projectile velocities

    图  5  不同应变率下的剪应力-剪应变曲线

    Figure  5.  Shear stress-shear strain curves of 603 steel at different strain rates

    图  6  DIHPB及SHPB方法在相似应变率下的实验结果对比

    Figure  6.  Comparison of shear stress-shear strain curves between DIHPB and SHPB systems at close strain rates

    图  7  DIHPB及SHPB方法的应变率曲线对比

    Figure  7.  Comparison of shear strain rate curves between DIHPB and SHPB systems

    图  8  603钢高速加载下的剪应力曲线

    Figure  8.  Shear stress curves of 603 steel at higher projectile velocities

    图  9  有限元模型及网格划分情况

    Figure  9.  Finite element model and meshing

    图  10  模拟中撞击杆及透射杆端面的受力曲线

    Figure  10.  Force curves at projectile and transmitter bar ends in simulation

    图  11  透射杆应变曲线的模拟与实验结果对比

    Figure  11.  Comparison of transmission strain curves between experimental and simulation results

    图  12  应力-应变曲线的模拟与实验结果对比

    Figure  12.  Comparison of stress-strain curves between experimental and simulation results

    图  13  透射杆应变的模拟与实验结果对比

    Figure  13.  Comparison of transmitted strain curves between experimental and simulation results

    表  1  模拟中的材料本构

    Table  1.   Material constants for Johnson-Cook model

    材料$A/{\rm{MPa}}$$B/{\rm{MPa}}$$C$$n$$m$${\dot \varepsilon _0}/{{\rm{s}}^{ - 1}}$${T_{\rm m}}/{\rm{K}}$${T_{\rm r}}/{\rm{K}}$
    603 钢1 276.1262.7 0.009 430.061 60.584 6911 723288
    7075 铝合金 503303.580.970.390.771 600298
    下载: 导出CSV

    表  2  模拟中的材料物理参数

    Table  2.   Material parameters used in finite element simulation

    部位 材料 ρ/(${\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}$)$E/{\rm{GPa}}$$\nu $λ/(W·m−1·K−1)c/(J·kg−1·K−1)
    入射杆 18 镍钢 8.01900.3
    试样 603 钢 7.82100.345480
    夹具 高强钢 7.82100.3
    透射杆 7075 铝合金 2.7700.3
    下载: 导出CSV
  • [1] LIAO S C, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201–2231. DOI: 10.1016/S0022-5096(98)00044-1.
    [2] RITTEL D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti-6Al-4V alloys [J]. Mechanics of Materials, 2008, 40(8): 629–635. DOI: 10.1016/j.mechmat.2008.03.002.
    [3] PEIRS J, VERLEYSEN P, DEGRIECK J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V [J]. International Journal of Impact Engineering, 2010, 37(6): 703–714. DOI: 10.1016/j.ijimpeng.2009.08.002.
    [4] BAKER W E, YEW C H. Strain-rate effects in the propagation of torsional plastic waves [J]. Journal of Applied Mechanics, 1966, 33(4): 917–923. DOI: 10.1115/1.3625202.
    [5] BAI Y L, XUE Q, Xu Y, SHEN L. Characteristics and microstructure in the evolution of shear localization in Ti-6Al-4V [J]. Mechanics of Materials, 1994, 17(2/3): 155–64. DOI: 10.1016/0167-6636(94)90056-6.
    [6] DUFFY J, CAMPBELL J D, HAWLEY R H. On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum [J]. Journal of Applied Mechanics, 1971, 38(1): 83–91. DOI: 10.1115/1.3408771.
    [7] CAMPBELL J D, ELEICHE A M, TSAO M C C. Strength of metals and alloys at high strains and strain rates [C] // JAFFEE R I, WILCOX B A. Fundamental Aspects of Structural Alloy Design. Boston, MA: Springer, 1977: 545−563. DOI: 110.1007/978-1-4684-2421-8_19.
    [8] HARTMANN K H, KUNZE H D, MEYER L W. Metallurgical effects on impact loaded materials [C] // MEYERS M A, MURR L E. Shock Waves and High-Strain-Rate Phenomena in Metals. Boston, MA: Springer, 1981: 325−337. DOI: 10.1007/978-1-4613-3219-0_21.
    [9] MINNAAR K, ZHOU M. An analysis of the dynamic shear failure resistance of structural metals [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(10): 2155–2170. DOI: 10.1016/S0022-5096(98)00020-9.
    [10] PURSCHE F, MEYER L W. Correlation between dynamic material behavior and adiabatic shear phenomenon for quenched and tempered steels [J]. Engineering Transactions, 2011, 59(2): 67–84.
    [11] MURR L E, STAUDHAMMER K P, MEYERS M A. Metallurgical applications of shock-wave and high-strain-rate phenomena[M]. New York: Marcel Dekker, 1986.
    [12] MEYER L W, PURSCHE F. Experimental methods [C] // DODD B, BAI Y. Adiabatic Shear Localization: Frontiers and Advances. London: Elsevier, 2012.
    [13] RUSINEK A, KLEPACZKO J R. Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress [J]. International Journal of Plasticity, 2001, 17(1): 87–115. DOI: 10.1016/S0749-6419(00)00020-6.
    [14] RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing [J]. Experiment Mechanics, 2002, 42(1): 58–64. DOI: 10.1007/BF02411052.
    [15] GUO Y, LI Y. A novel approach to testing the dynamic shear response of Ti-6Al-4V [J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299–311. DOI: 10.1016/S0894-9166(12)60027-5.
    [16] 许泽建, 丁晓燕, 张炜琪, 等. 一种用于材料高应变率剪切性能测试的新型加载技术 [J]. 力学学报, 2016, 48(3): 654–659. DOI: 10.6052/0459-1879-15-445.

    XU Zejian, DING Xiaoyan, ZHANG Weiqi, et al. A new loading technique for measuring shearing properties of materials under high strain rates [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 654–659. DOI: 10.6052/0459-1879-15-445.
    [17] XU Zejian. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique [J]. International Journal of Impact Engineering, 2017, 101: 90–104. DOI: 10.1016/j.ijimpeng.2016.11.012.
    [18] XU Zejian. On shear failure behaviors of an armor steel over a large range of strain rates [J]. International Journal of Impact Engineering, 2018, 118: 24–28. DOI: 10.1016/j.ijimpeng.2018.04.003.
    [19] 张炜琪, 许泽建, 孙中岳, 等. Ti-6Al-4V在高应变率下的动态剪切特性及失效机理 [J]. 爆炸与冲击, 2018, 38(5): 1137–1144. DOI: 10.11883/bzycj-2017-0107.

    ZHANG Weiqi, XU Zejian, SUN Zhongyue, et al. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates [J]. Explosion and Shock Waves, 2018, 38(5): 1137–1144. DOI: 10.11883/bzycj-2017-0107.
    [20] GORHAM D A. Measurement of stress-strain properties of strong metals at very high strainrates [C] // HARDING J. Mechanical properites at high rates of strain.1979: 16−24.
    [21] DHARAN C K H, HAUSER F E. Determination of stress-strain characteristics at very high strain rates [J]. Experimental Mechanics, 1970, 10(9): 370–376. DOI: 10.1007/BF02320419.
    [22] ZHAO Han. A study on testing techniques for concrete-like materials under compressive impact loading [J]. Cement and Concrete Composites, 1998, 20(4): 293–299. DOI: 10.1016/S0958-9465(98)00008-0.
    [23] 陶俊林, 陈裕泽, 陈刚, 等.直接撞击Hopkinson压杆系统数值模拟[J].固体力学学报, 2003, 24(S): 198−203.

    TAO Junlin, CHEN Yuze, CHEN Gan, et al. Numerical simulation of direct impact Hopkinson pressure bar system[J]. Acta Mechanica Solida Sinica, 2003, 24(S): 198−203.
    [24] 陶俊林. 直接撞击Hopkinson实验技术讨论 [C] // 中国科学技术大学冲击动力学实验室.第三届全国爆炸力学实验技术交流会论文集. 2004: 11−23.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  5114
  • HTML全文浏览量:  1531
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-15
  • 修回日期:  2018-12-20
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回