浅埋高压输气管道爆炸地面振动的原型试验与数值模拟研究

马华原 龙源 谢全民 宋歌 周游 殷勤

马华原, 龙源, 谢全民, 宋歌, 周游, 殷勤. 浅埋高压输气管道爆炸地面振动的原型试验与数值模拟研究[J]. 爆炸与冲击, 2019, 39(10): 102201. doi: 10.11883/bzycj-2018-0303
引用本文: 马华原, 龙源, 谢全民, 宋歌, 周游, 殷勤. 浅埋高压输气管道爆炸地面振动的原型试验与数值模拟研究[J]. 爆炸与冲击, 2019, 39(10): 102201. doi: 10.11883/bzycj-2018-0303
MA Huayuan, LONG Yuan, XIE Quanmin, SONG Ge, ZHOU You, YIN Qin. Prototypical experiment and numerical simulation of ground vibrationresulting from explosion in shallowly buried gas pipelines[J]. Explosion And Shock Waves, 2019, 39(10): 102201. doi: 10.11883/bzycj-2018-0303
Citation: MA Huayuan, LONG Yuan, XIE Quanmin, SONG Ge, ZHOU You, YIN Qin. Prototypical experiment and numerical simulation of ground vibrationresulting from explosion in shallowly buried gas pipelines[J]. Explosion And Shock Waves, 2019, 39(10): 102201. doi: 10.11883/bzycj-2018-0303

浅埋高压输气管道爆炸地面振动的原型试验与数值模拟研究

doi: 10.11883/bzycj-2018-0303
基金项目: 国家自然科学基金(11672331,51608530,51808554)
详细信息
    作者简介:

    马华原(1992- ),男,博士研究生,503812350@qq.com

    通讯作者:

    谢全民(1983- ),男,博士,讲师,xiequanmin1983@163.com

  • 中图分类号: O383; TE88

Prototypical experiment and numerical simulation of ground vibrationresulting from explosion in shallowly buried gas pipelines

  • 摘要: 针对浅埋高压输气管道爆炸产生的地面振动效应,采用现场试验结合数值模拟的方法展开研究。组织实施了全尺寸天然气管道爆炸试验,掌握了高压输气管道爆炸地面振动的量级范围以及衰减规律。经试验数据分析得到,埋地高压天然气管道爆炸造成的地面振动主要产生于物理爆炸过程中,随后发生的天然气爆燃过程并未产生明显的地面振动。基于非线性有限元程序 LS-Dyna建立了高压输气管道爆炸试验计算模型,计算结果与试验现象吻合较好,验证了模型参数设计的合理性。进一步分析了管道爆炸瞬间管内气体-管壁-土体的相互作用机理、应力分布以及裂纹扩展规律。由计算结果分析得到,管道开裂是由于内部高压气体推动管壁向两侧扩展在裂纹尖端处形成了应力集中,管壁冲击土体的速度可达50 m/s,冲击产生的塑性状态向远处传播逐渐衰减为弹性应力波,即形成了地面振动效应。研究成果揭示了高压气体管道爆炸地面振动的主要成因,可为爆炸事故振动预防提供理论参考和技术支持。
  • 图  1  测点布设方案

    Figure  1.  Layout scheme of measuring points

    图  2  切割器装配示意图

    Figure  2.  Sketch of cutter assembly

    图  3  测点布设方案

    Figure  3.  Layout scheme of measuring points

    图  4  爆炸过程

    Figure  4.  Explosion process

    图  5  地震波到达时刻

    Figure  5.  Time of arrival of seismic waves

    图  6  蘑菇云的形成时刻

    Figure  6.  Time for mushroom cloud formation

    图  7  整体模型

    Figure  7.  Integral model

    图  8  气体模型

    Figure  8.  Gas model

    图  9  管道模型

    Figure  9.  Pipeline model

    图  10  管道开裂模拟结果

    Figure  10.  Simulation results of pipe cracking

    图  11  管内气体压力状态

    Figure  11.  Pressure states of gas inside the pipeline

    图  12  管内气体压力曲线

    Figure  12.  Pressure curves of gas in pipe

    图  13  模拟结果和试验结果对比

    Figure  13.  Comparison of simulation and experimental results

    图  14  管壁开裂情况模拟结果

    Figure  14.  Simulation results of pipe wall cracking

    图  15  管壁开裂速度

    Figure  15.  Cracking rate of pipe wall

    图  16  土中压力状态

    Figure  16.  Pressure state in soil

    图  17  原始波形

    Figure  17.  Original waveform

    图  19  时频能量分布谱

    Figure  19.  Time-frequency energy distribution spectrum

    图  18  瞬时能量谱

    Figure  18.  Instantaneous energy spectrum

    图  20  质点振动位移

    Figure  20.  Particle vibration displacement

    表  1  振动测试仪性能参数

    Table  1.   Technical parameters of the vibration recorders

    型号通道数频响范围/Hz量程/(cm·s−1)读数精度/%采样率/s−1
    Blast-UM35~300< 350.11 000~10 000
    TC-485035~500< 350.11 000~50 000
    下载: 导出CSV

    表  2  气体模型主要参数

    Table  2.   Main parameters of gas model

    部位材料号密度/(g·cm−3)状态方程内能/(g·cm2·μs −2)
    管内气体*MAT_NULL9.160×10−2*EOS_LINEAR_POLYNOMIAL3.00×10−4
    管外空气域*MAT_NULL1.292×10−3*EOS_LINEAR_POLYNOMIAL2.50×10−6
    下载: 导出CSV

    表  3  金属模型主要参数

    Table  3.   Main parameters of metal model

    部位材料号密度/(g·cm−3)剪切模量/(g·cm−1·μs−2)泊松比状态方程内能/(g·cm2·μs −2)
    管体材料*MAT_JOHNSON_COOK7.890.770.3*EOS_GRÜNEISEN3.00×10−4
    下载: 导出CSV

    表  4  土体模型主要参数

    Table  4.   Main parameters of soil model

    部位材料号密度/(g·cm−3)弹性模量/(g·cm−1·μs−2)泊松比
    土体材料*MAT_PLASTIC_KINEMATIC1.83.23×10−40.25
    下载: 导出CSV
  • [1] 王保群, 林燕红, 焦中良. 我国天然气管道现状与发展方向 [J]. 国际石油经济, 2013, 21(8): 76–79; 109−110. DOI: 10.3969/j.issn.1004-7298.2013.08.012.

    WANG Baoqun, LIN Yanhong, JIAO Zhongliang. Status and development direction of China’s natural gas pipelines [J]. International Petroleum Economics, 2013, 21(8): 76–79; 109−110. DOI: 10.3969/j.issn.1004-7298.2013.08.012.
    [2] 范照伟. 全球天然气发展格局及我国天然气发展方向分析 [J]. 中国矿业, 2018, 27(4): 11–16; 22.

    FAN Zhaowei. Global natural gas development pattern and the analysis of development direction of natural gas in China [J]. China Mining Magazine, 2018, 27(4): 11–16; 22.
    [3] 党学博, 李怀印. 中亚天然气管道发展现状与特点分析 [J]. 油气储运, 2013, 32(7): 692–697.

    DANG Xuebo, LI Huaiyin. Development and characteristics of central Asian natural gas pipelines [J]. Oil and Gas Storage and Transportation, 2013, 32(7): 692–697.
    [4] DONG Gang, XUE Lin, YANG Yun, et al. Evaluation of hazard range for the natural gas jet released from a high-pressure pipeline: a computational parametric study [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(4): 522–530. DOI: 10.1016/j.jlp.2010.04.007.
    [5] LOWESMITH B J, HANKINSON G. Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures [J]. Process Safety and Environmental Protection, 2013, 91(1): 101–111.
    [6] SKLAVOUNOS S, RIGAS F. Estimation of safety distances in the vicinity of fuel gas pipelines [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(1): 24–31. DOI: 10.1016/j.jlp.2005.05.002.
    [7] BARALDI D, KOTCHOURKO A, LELYAKIN A, et al. An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel [J]. International Journal of Hydrogen Energy, 2009, 34(18): 7862–7872. DOI: 10.1016/j.ijhydene.2009.06.055.
    [8] GALLEGO E, MIGOYA E, MARTIN-VALDEPENAS J M, et al. An intercomparison exercise on the capabilities of CFD models to predict distribution and mixing of H2 in a closed vessel [J]. International Journal of Hydrogen Energy, 2007, 32(13): 2235–2245. DOI: 10.1016/j.ijhydene.2007.04.009.
    [9] SU Huayou. Analysis of characteristics of compound vibration and effects to surrounding gas pipeline caused by impact and explosion [J]. Procedia Engineering, 2011, 26: 1835–1843. DOI: 10.1016/j.proeng.2011.11.2374.
    [10] YANG S, FANG Q, ZHANG Y, et al. An integrated quantitative hazard analysis method for natural gas jet release from underground gas storage caverns in salt rock.Ⅰ: Models and validation [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 74–81. DOI: 10.1016/j.jlp.2012.09.008.
    [11] 王德国. 基于管道爆炸数值模拟的架空天然气管道并行间距研究 [J]. 中国石油大学学报(自然科学版), 2013, 37(5): 175–180. DOI: 10.3969/j.issn.1673-5005.2013.05.025.

    WANG Deguo. Safe distance of overhead parallel pipeline calculated by numerical simulation of gas pipeline explosion [J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 175–180. DOI: 10.3969/j.issn.1673-5005.2013.05.025.
    [12] 谌贵宇, 纪冲, 王棠昱, 等. 爆炸地震波作用下埋地油气管道动力响应研究 [J]. 天然气与石油, 2015, 33(5): 1–5; 7. DOI: 10.3969/j.issn.1006-5539.2015.05.001.

    SHEN Guiyu, JI Chong, WANG Tangyu, et al. Research on dynamic response of buried oil and gas pipelines subjected to blasting seismic waves [J]. Natural Gas and Oil, 2015, 33(5): 1–5; 7. DOI: 10.3969/j.issn.1006-5539.2015.05.001.
    [13] 杜洋, 马利, 郑津洋, 等. 考虑流固耦合的管道爆炸后果预测与分析 [J]. 浙江大学学报(工学版), 2017, 51(3): 429–435. DOI: 10.3785/j.issn.1008-973X.2017.03.001.

    DU Yang, MA Li, ZHENG Jinyang, et al. Consequences prediction and analysis of pipe explosion considering fluid-structure interaction [J]. Journal of Zhejiang University (Engineering Science), 2017, 51(3): 429–435. DOI: 10.3785/j.issn.1008-973X.2017.03.001.
    [14] 张振永, 张文伟, 周亚薇, 等. 中俄东线OD 1422 mm埋地管道的断裂控制设计 [J]. 油气储运, 2017, 36(9): 1059–1064. DOI: 10.6047/j.issn.1000-8241.2017.09.013.

    ZHANG Zhenyong, ZHANG Wenwei, ZHOU Yawei, et al. The fracture control design of the OD 1422 mm buried pipeline in China-Russia eastern gas pipeline [J]. Oil and Gas Storage and Transportation, 2017, 36(9): 1059–1064. DOI: 10.6047/j.issn.1000-8241.2017.09.013.
    [15] 霍春勇, 李鹤, 张伟卫, 等. X80钢级1422 mm大口径管道断裂控制技术 [J]. 天然气工业, 2016, 36(6): 78–83. DOI: 10.3787/j.issn.1000-0976.2016.06.012.

    HUO Chunyong, LI He, ZHANG Weiwei, et al. Fracture control technology for the X80 large OD 1422 mm line pipes [J]. Natural Gas Industry, 2016, 36(6): 78–83. DOI: 10.3787/j.issn.1000-0976.2016.06.012.
    [16] MAHDAVI H, KENNY S, PHILLIPS R, et al. Influence of geotechnical loads on local buckling behavior of buried pipelines [C] // 7th International Pipeline Conference. American Society of Mechanical Engineers, 2008: 543−551.
    [17] 李洪涛, 卢文波, 舒大强, 等. 爆破地震波的能量衰减规律研究 [J]. 岩石力学与工程学报, 2010, 29(S1): 3364–3369.

    LI Hongtao, LU Wenbo, SHU Daqiang, et al. Study of energy attenuation law of blast-induced seismic wave [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3364–3369.
    [18] 吕涛, 石永强, 黄诚, 等. 非线性回归法求解爆破振动速度衰减公式参数 [J]. 岩土力学, 2007(9): 1871–1878. DOI: 10.3969/j.issn.1000-7598.2007.09.019.

    LV Tao, SHI Yongqiang, HUANG Cheng, et al. Study on attenuation parameters of blasting vibrationby nonlinear regression analysis [J]. Rock and Soil Mechanics, 2007(9): 1871–1878. DOI: 10.3969/j.issn.1000-7598.2007.09.019.
    [19] 闫孔明, 刘飞成, 朱崇浩, 等. 地震作用下含倾斜软弱夹层斜坡场地的动力响应特性研究 [J]. 岩石力学与工程学报, 2017, 36(11): 2686–2698.

    YAN Kongming, LIU Feicheng, ZHU Chonghao, et al. Dynamic responses of slopes with intercalated soft layers under seismic excitations [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2686–2698.
    [20] MAJKOWSKI A, KOŁODZIEJ M, RAK R J. Joint time-frequency and wavelet analysis an introduction [J]. Metrology and Measurement Systems, 2014, 21(4): 741–758. DOI: 10.2478/mms-2014-0054.
    [21] PRABHU K M M, SUNDARAM R S. Some results on fixed-point error analysis of Wigner-Ville distribution [J]. Signal Processing, 1996, 51(3): 235–240. DOI: 10.1016/0165-1684(96)00047-3.
    [22] SHI Xiuzhi, XUE Jianguang, CHEN Shouru. Two times time-frequency analysis of bilinear transformation of blasting vibration signal [J]. Journal of Vibration and Shock, 2008, 27(12): 131–134; 185. DOI: 10.13465/j.cnki.jvs.2008.12.005.
    [23] ZHONG Guosheng, FANG Yingguang, XU Guoyuan. Evaluation of blasting vibration effect of building structures based on wavelet transform [J]. Journal of Vibration and Shock, 2008, 27(8): 121–124; 129; 182. DOI: 10.13465/j.cnki.jvs.2008.08.038.
    [24] AHMED L, ANSELL A. Structural dynamic and stress wave models for the analysis of shotcrete on rock exposed to blasting [J]. Engineering Structures, 2012, 35: 11–17. DOI: 10.1016/j.engstruct.2011.10.008.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  6300
  • HTML全文浏览量:  1900
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-21
  • 修回日期:  2018-11-21
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回