Experimental study of multi-objective coupling synchronous control in gas/air premixed gas deflagration flow test system
-
摘要: 为了更精确地获得爆炸激波管内瓦斯/空气预混气体爆燃过程中,激波形成过程、压力和火焰传播速度以及火焰与惰性阻燃剂相互作用的流场演化图像。通过分析激波管测试系统中多个目标的时间响应特征及控制方式,利用超高速相机、光电倍增管、时间延时器、固态继电器、电荷放大器和数据采集系统等设备,设计实验方案,分别对激波管中瓦斯/空气预混气体爆燃高压点火系统的响应时间和惰性介质阻燃剂喷射系统的响应时间进行测试。实验结果表明电火花点火的响应时间为微秒量级,而阻燃剂喷射系统的响应时间为毫秒量级,以响应时间为依据,通过设置精确的延迟时间实现多目标同步控制,为完成激波管内瓦斯/空气预混气体爆燃过程的微观流场显示奠定基础。Abstract: To obtain more accurate images of the shock wave formation process, pressure and flame propagation velocity, and flow field evolution of flame-inert flame retarding interaction duringpremixed gas/air deflagration in a blast shock tube, by analyzing the time response’s characteristics and the control modes of multiple targets in the shock tube test system, we designed two experimental schemes using an ultrahigh speed camera, a photomultiplier tube, a time delayer, a solid state relay, a charge amplifier and a data acquisition system, and tested the response time of the high pressure ignition system and the inert medium flame retarding injection system. The results showed that the response time of the spark ignition is microsecond, and that of the flame retarding injection system is millisecond. Based on the response time, we realized the multi-objective synchronous control by setting a precise delay time, thus laying a foundation for the display of a micro-flow field of premixed gas/air deflagration in a shock tube.
-
表 1 同步控制实验系统中的变量
Table 1. Variables in synchronous control experiment system
表 2 高压点火系统放电响应时间t1实验数据
Table 2. Experimental data on discharge response time of high voltage ignition system t1
实验序号 t1/μs 实验序号 t1/μs 1 26 N5 23 2 24 N6 24 3 22 N7 20 4 21 N8 22 表 3 惰性介质阻燃剂喷射系统响应时间t2实验数据
Table 3. Inert medium flame retardant injection system response time t2 experimental data
实验序号 拍摄速率/s−1 照片帧数 响应时间t2/μs 1 4 000 N19 4 500 2 4 000 N20 4 750 3 8 000 N36 4 375 4 8 000 N38 4 625 5 10 000 N45 4 400 6 10 000 N44 4 300 -
[1] 劳动保护编辑部. 2017年重特大事故回顾 [J]. 劳动保护, 2018, 20(1): 16–18. DOI: 10.3969/j.issn.1000-4335.2018.01.009.Labor protection editorial department. Review of serious and extraordinary accidents in 2017 [J]. Labor Protection, 2018, 20(1): 16–18. DOI: 10.3969/j.issn.1000-4335.2018.01.009. [2] 李润之, 司荣军, 张延松, 等. 煤矿瓦斯爆炸特性及发展趋势 [J]. 煤炭技术, 2010, 29(4): 4–6.LI Runzhi, SI Rongjun, ZHANG Yansong, et al. Characteristics and development trend of coal mine gas explosion [J]. Coal Technology, 2010, 29(4): 4–6. [3] 陈鹏, 李艳超, 黄福军, 等. 方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟 [J]. 爆炸与冲击, 2017, 37(1): 21–16. DOI: 10.11883/1001-1455(2017)01-0021-06.CHEN Peng, LI Yanchao, HUANG Fujun, et al. LES approach to premixed methane/air flame propagating in the closed duct with a square-hole obstacle [J]. Explosion and Shock Waves, 2017, 37(1): 21–16. DOI: 10.11883/1001-1455(2017)01-0021-06. [4] 王公忠, 张建华, 李登科, 等. 障碍物对预混火焰特性影响的大涡数值模拟 [J]. 爆炸与冲击, 2017, 37(1): 68–76. DOI: 10.11883/1001-1455(2017)01-0068-09.WANG Gongzhong, ZHANG Jianhua, LI Dengke, et al. Large eddy simulation of impacted obstacles’ effects on premixed flame's characteristics [J]. Explosion and Shock Waves, 2017, 37(1): 68–76. DOI: 10.11883/1001-1455(2017)01-0068-09. [5] 王高峰, 马承飚, 王宝源, 等. 激波诱导甲烷点火化学反应区的可视化实验研究 [J]. 科学通报, 2008, 53(19): 2371–2378. DOI: 10.3321/j.issn:0023-074X.2008.19.016.WANG Gaofeng, MA Chengju, WANG Baoyuan, et al. Visual experimental study on chemical reaction zone of shock-induced methane ignition [J]. Chinese Science Bulletin, 2008, 53(19): 2371–2378. DOI: 10.3321/j.issn:0023-074X.2008.19.016. [6] 张尊华, 李敬瑞, 万琦, 等. 激波管的调试与甲烷着火延迟时间的测量 [J]. 华中科技大学学报(自然科学版), 2017, 45(7): 56–60.ZHANG Zunhua, LI Jingrui, WAN Qi, et al. Calibration of shock tube and determination of ignition delay time formethane for methane [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(7): 56–60. [7] 王连聪, 罗海珠, 梁运涛, 等. 激波管中水对瓦斯爆炸反应动力学特性的影响 [J]. 煤炭学报, 2014, 39(10): 2038–2042. DOI: 10.13225/j.cnki.jccs.2013.1383.WANG Liancong, LUO Haizhu, LIANG Yuntao, et al. Effects of water on reaction kinetic for gas explosion in shock tube [J]. Journal of China Coal Society, 2014, 39(10): 2038–2042. DOI: 10.13225/j.cnki.jccs.2013.1383. [8] 任少云. 密闭空间内天然气混合及爆炸传播规律研究 [J]. 中国安全生产科学技术, 2016, 12(11): 130–135. DOI: 10.11731/j.issn.1673-193x.2016.11.022.REN Shaoyun. Study on mixing and explosion propagation laws of natural gas in confined space [J]. Journal of Safety Science and Technology, 2016, 12(11): 130–135. DOI: 10.11731/j.issn.1673-193x.2016.11.022. [9] CICCARELLIA G, DOROFEEV S. Flame acceleration and transition detonation in ducts [J]. Progress in Energy and Combustion Science, 2008, 34: 499–550. DOI: 10.1016/j.pecs.2007.11.002. [10] BYCHKOV V, VALIEV D, AKKERMAN V, et al. Gas compression moderates flame acceleration in deflagration-to-detonation transition [J]. Combustion Science and Technology, 2012, 184(7-8): 1066–1079. DOI: 10.1080/00102202.2012.663995. [11] 蔺伟, 回岩, 王成, 等. 瓦斯体积分数对火焰传播规律影响的实验研究 [J]. 北京理工大学学报, 2015, 35(6): 552–555. DOI: 10.15918/j.tbit1001-0645.2015.06.001.LIN Wei, HUI Yan, WANG Cheng, et al. Experimental study on the effect of gas volume fraction on the law of flame propagation [J]. Journal of Beijing University of Technology, 2015, 35(6): 552–555. DOI: 10.15918/j.tbit1001-0645.2015.06.001. [12] 陈东梁, 孙金华, 刘义, 等. 甲烷/空气预混气体火焰的传播特征 [J]. 爆炸与冲击, 2008, 28(5): 385–390.CHEN Dongliang, SUN Jinhua, LIU Yi, et al. Propagation characteristics of premixed methane-air flames [J]. Explosion and Shock Waves, 2008, 28(5): 385–390. [13] 廖钦, 徐胜利. 雾化激波管研制和煤油点火延时测量 [J]. 实验流体力学, 2009, 23(3): 70–74. DOI: 10.3969/j.issn.1672-9897.2009.03.015.LIAO Qin, XU Shengli. The ignition delay measurement of atomized kerosene air mixture in an aerosol shock tube [J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 70–74. DOI: 10.3969/j.issn.1672-9897.2009.03.015. [14] 史晓亮, 徐景德, 徐胜利, 等. 中尺度管道内瓦斯爆炸压力火焰传播特性初步研究 [J]. 华北科技学院学报, 2016, 13(4): 76–82. DOI: 10.3969/j.issn.1672-7169.2016.04.017.SHI Xiaoliang, XU Jingde, XU Shengli, et al. Preliminary study on pressure flame propagation characteristics of Gas explosion in mesoscale pipeline [J]. Journal of North China Institute of Science and Technology, 2016, 13(4): 76–82. DOI: 10.3969/j.issn.1672-7169.2016.04.017.