旋转射弹高速倾斜入水多相流场与弹道数值模拟

朱珠 罗松 卢丙举 于勇

朱珠, 罗松, 卢丙举, 于勇. 旋转射弹高速倾斜入水多相流场与弹道数值模拟[J]. 爆炸与冲击, 2019, 39(11): 113901. doi: 10.11883/bzycj-2018-0315
引用本文: 朱珠, 罗松, 卢丙举, 于勇. 旋转射弹高速倾斜入水多相流场与弹道数值模拟[J]. 爆炸与冲击, 2019, 39(11): 113901. doi: 10.11883/bzycj-2018-0315
ZHU Zhu, LUO Song, LU Bingju, YU Yong. Numerical simulation of multiphase flow field and trajectory of high-speed oblique water entry of rotating projectile[J]. Explosion And Shock Waves, 2019, 39(11): 113901. doi: 10.11883/bzycj-2018-0315
Citation: ZHU Zhu, LUO Song, LU Bingju, YU Yong. Numerical simulation of multiphase flow field and trajectory of high-speed oblique water entry of rotating projectile[J]. Explosion And Shock Waves, 2019, 39(11): 113901. doi: 10.11883/bzycj-2018-0315

旋转射弹高速倾斜入水多相流场与弹道数值模拟

doi: 10.11883/bzycj-2018-0315
基金项目: 河南省水下智能装备重点实验室2018年度开放基金(KL02B1801)
详细信息
    作者简介:

    朱 珠(1981- )女,博士,高级工程师,zzqy801@163.com

    通讯作者:

    于 勇(1976- )男,博士,副教授,yuyong@bit.edu.cn

  • 中图分类号: O359

Numerical simulation of multiphase flow field and trajectory of high-speed oblique water entry of rotating projectile

  • 摘要: 基于VOF多相流模型和有限体积法求解水、汽、气多相流动的RANS方程,结合重叠网格技术和six DOF算法对某一型号舰载射弹倾斜入水过程进行数值模拟研究。首先基于该方法研究了射弹旋转效应对射弹运动特性及流体动力特性的影响,然后对不同入水角下倾斜入水过程进行分析,得到不同倾角下旋转射弹入水空泡形态发展规律、弹体运动特征及流体动力特性变化规律。研究结果表明:射弹的旋转有利于弹体在初始对称面内的弹道稳定性,但会降低弹体侧向稳定性,使射弹受到的阻力系数、俯仰力矩系数变小;入水角越小,形成的空泡越不对称,由射弹运动状态的改变引起的空泡形态变化越明显,在超空泡航行阶段,弹体运动较稳定,不同角度下流体动力系数差别很小,当弹体下表面刺破空泡壁沾湿时,弹体运动状态发生较大变化,流体动力系数迅速增大,此时入水角度过小,弹体容易失稳;弹体的沾湿对空泡形态、弹体运动稳定性和流体动力特性有着重要的影响。
  • 图  1  弹体对称面结构示意图

    Figure  1.  Sketch of projectile’s symmetry plane

    图  2  弹体倾斜入水流域对称面示意图

    Figure  2.  Sketch of the fluid domain’s symmetry plane for oblique water entry of projectile

    图  3  30°入水角z=0平面网格示意图

    Figure  3.  Schematic of the grid in z=0 plane of 30 degrees inclined angle

    图  4  平头圆柱入水的位移与速度变化

    Figure  4.  Displacement and velocity of the flat head cylinder water-entry

    图  5  不同旋转速度下弹体质心轨迹图

    Figure  5.  Centroid trajectory of projectile at different rotation velocities

    图  6  不同旋转速度下弹体质心轨迹xOy平面投影曲线

    Figure  6.  Projection of centroid trajectory of projectile on xOy plane at different rotation velocities

    图  7  不同旋转速度下弹体质心速度变化曲线

    Figure  7.  Velocity curves of projectile at different rotation velocities

    图  8  不同旋转速度下弹体姿态角变化曲线

    Figure  8.  Attitudes change of projectile at different rotation velocities

    图  9  不同旋转速度下弹体阻力系数(Cd)变化曲线

    Figure  9.  Drag coefficients (Cd) evolution of projectile at different rotation velocities

    图  10  不同旋转速度下弹体升力(Cl)系数变化曲线

    Figure  10.  Lift coefficients (Cl) evolution of projectile at different rotation velocities

    图  11  不同旋转速度下弹体偏航力矩系数变化曲线

    Figure  11.  Yawing moment coefficients evolution of projectile at different rotation velocities

    图  12  不同旋转速度下弹体俯仰力矩系数变化曲线

    Figure  12.  Pitching moment coefficients evolution of projectile at different rotation velocities

    图  13  弹体不同角度入水空泡形态图

    Figure  13.  Cavitation shapes of the projectile at different inclined water entry angles

    图  14  不同入水角度下弹体质心轨迹图

    Figure  14.  Centroid trajectory of projectile at different inclined water entry angles

    图  15  不同入水角度下弹体质心速度变化曲线

    Figure  15.  The velocity curves of projectile at different inclined water entry angles

    图  16  不同入水角度下弹体滚转角(ϕ)变化曲线

    Figure  16.  Roll angle (ϕ) curves of projectile at different inclined water entry angles

    图  17  不同入水角度下弹体偏航角(θ)变化曲线

    Figure  17.  Yaw angle (θ) curves of projectile at different inclined water entry angles

    图  18  不同入水角度下弹体俯仰角(ψ)变化曲线

    Figure  18.  Pitch angle (ψ) curves of projectile at different inclined water entry angles

    图  19  不同入水角度下弹体阻力系数变化曲线

    Figure  19.  Drag force coefficients evolution of projectile at different inclined water entry angles

    图  20  不同入水角度下弹体升力系数变化曲线

    Figure  20.  Lift force coefficients evolution of projectile at different inclined water entry angles

    图  21  不同入水角度下弹体滚转力矩系数变化曲线

    Figure  21.  Rolling moment coefficients evolution of projectile at different inclined water entry angles

    图  22  不同入水角度下弹体偏航力矩系数变化曲线

    Figure  22.  Yawing moment coefficients evolution of projectile at different inclined water entry angles

    图  23  不同入水角度下弹体俯仰力矩系数变化曲线

    Figure  23.  Pitching moment coefficients evolution of projectile at different inclined water entry angles

  • [1] WORTHINGTON A M, COLE R S. Impact with a liquid surface studied by the aid of instantaneous photography [J]. Philosophical Transactions of the Royal Society of London, 1900, 189: 175–199.
    [2] WORTHINGTON A M, COLE R S. A study of splashes [M]. New York: Longmans Green and Company, 1908: 25−76.
    [3] SAVCHENKO Y. Supercavitation-problems and perspectives [C] // 4th International Sysmposium on Cavitation. Pasadena, USA: California Institute of Technology, 2001: 1−8.
    [4] SAVCHENKO Y N. Control of supercavitation flow and stability of supercavitating motion of bodies [C] // Vki Lecture Series Supercavitating Flows, 2001.
    [5] SEMENENKO V N. Artificial Supercavitation. Physics and calculation [J]. Materials Research, 1(3): 1−5.
    [6] LOGVINOVICH G V. Hydrodynamics of flows with free boundaries [M]. Kiev: Naukova Dumka, 1969.
    [7] 施红辉, 周浩磊, 吴岩, 等. 伴随超空泡产生的高速细长体入水实验研究 [J]. 力学学报, 2012, 44(1): 49–55. DOI: 10.6052/0459-1879-2012-1-lxxb2011-062.

    SHI Honghui, ZHOU Haolei, WU Yan, et. al Experiments on water entry of high-speed slender body and the resulting supercavitation [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 49–55. DOI: 10.6052/0459-1879-2012-1-lxxb2011-062.
    [8] SHI H H, ITOH M, TAKAMI T. Optical observation of the supercavitation induced by high-speed water entry [J]. Journal of Fluids Engineering, 2000, 122(4): 806–810. DOI: 10.1115/1.1310575.
    [9] 宋武超, 王聪, 魏英杰, 许昊. 回转体倾斜入水空泡及弹道特性实验 [J]. 北京航空航天大学学报, 2016, 42(11): 2386–2394.

    SONG Wuchao, WANG Cong, WEI Yingjie, XU Hao. Experiment of cavity trajectory characteristics of oblique water entry of revolution bodies [J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11): 2386–2394.
    [10] 马庆鹏. 高速射弹入水过程多相流场特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    MA Qingpeng. Investigation of multiphase flow characteristics induced by water entry of high-speed projectiles [D]. Harbin: Harbin Institute of Technology, 2014.
    [11] 何春涛. 超空泡射弹结构参数设计与数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    HE Chuntao. Structure parameter design and numerical simulation study on supercavitation projectile [D]. Harbin: Harbin Institute of Technology, 2009.
    [12] 孙健. 小尺度回转体入水过程的三维数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    SUN Jian. Three dimensional simulation in water entry of small scale rotary body [D]. Harbin: Harbin Institute of Technology, 2014.
    [13] 宋武超, 王聪, 魏英杰, 等. 不同头型回转体低速倾斜入水过程流场特性数值模拟 [J]. 北京理工大学学报, 2017, 37(7): 661–666, 671.

    SONG Wuchao, WANG Cong, WEI Yingjie, et al. Numerical simulation of flow field characteristics of low speed oblique water entry of revolution body [J]. Transaction of Beijing Institute of Technology, 2017, 37(7): 661–666, 671.
    [14] 齐亚飞. 弹体高速入水弹道稳定及空泡特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    QI Yafei. Research on the trajectory stability and cavity characteristics of high-speed water entry projectiles [D]. Harbin: Harbin Institute of Technology, 2016.
    [15] 赵成功, 王聪, 魏英杰, 等. 细长体水下运动空化流场及弹道特性实验 [J]. 爆炸与冲击, 2017, 37(3): 439–446. DOI: 10.11883/1001-1455(2017)03-0439-08.

    ZHAO Chenggong, WANG Cong, WEI Yingjie, et al. Experiment of cavitation and ballistic characteristics of slender body underwater movement [J]. Explosion and Shock Waves, 2017, 37(3): 439–446. DOI: 10.11883/1001-1455(2017)03-0439-08.
    [16] 赵成功, 王聪, 孙铁志, 等. 初始扰动对射弹尾拍运动及弹道特性影响分析 [J]. 哈尔滨工业大学学报, 2016, 48(10): 71–76. DOI: 10.11918/j.issn.0367-6234.2016.10.010.

    ZHAO Chenggong, WANG Cong, SUN Tiezhi, et al. Analysis of tail-slapping and ballistic characteristics of supercavitating projectiles under different initial disturbances [J]. Journal of Harbin Institute of Technology, 2016, 48(10): 71–76. DOI: 10.11918/j.issn.0367-6234.2016.10.010.
    [17] 李佳川. 高速射弹入水过程流体动力与弹道特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    LI Jiachuan. Research on water entry hydrodynamic and trajectory characteristics of high-speed projectiles [D]. Harbin: Harbin Institute of Technology, 2016.
    [18] Fluent Inc. Fluent theory guide [M/DK]. 2017.
    [19] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 1598–1605. DOI: 10.2514/3.12149.
    [20] RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science: Series 6, 1917, 34: 94–98. DOI: 10.1080/14786440808635681.
    [21] LEE M, LONGORIA R G, WILSON D E. Cavity dynamics in high-speed water entry [J]. Physics of Fluids, 1997, 9(3): 540–550. DOI: 10.1063/1.869472.
    [22] 郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    GUO Zitao. Research on characteristics of projectile water entry and ballistic resistance of targets under different mediums [D]. Harbin: Harbin Institute of Technology, 2012.
  • 加载中
图(23)
计量
  • 文章访问数:  6220
  • HTML全文浏览量:  1507
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-27
  • 修回日期:  2018-12-03
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回