Blast loading distributions on the circular sectional bridge columns
-
摘要: 墩柱是桥梁结构的主要承载构件,研究爆炸荷载在墩柱上的分布规律是分析爆炸荷载作用下桥梁结构动态响应的前提。以圆截面桥梁墩柱为研究对象,基于LS-DYNA软件建立了桥梁墩柱的有限元模型,综合考虑炸药当量、爆心高度、爆炸距离和墩柱直径等影响因素,基于数值模拟得到爆心高度低于0.3倍墩柱高度,比例距离为0.5~2.1 m/kg1/3和墩柱直径为0.15~1 m时,爆炸荷载冲量沿墩柱高度和横截面方向上的分布。结果表明:沿墩柱高度方向,地面爆炸或爆心高度为0.1倍柱高时,墩柱前表面冲量近似“单线性”分布,当爆心高度距地面0.2和0.3倍柱高时,墩柱前表面冲量近似“双线性”分布;沿横截面方向的平均净冲量与其前表面冲量之比为常数。基于上述爆炸荷载冲量分布规律,进一步提出了爆炸荷载作用在桥梁墩柱上总净冲量的计算方法,从而为桥梁墩柱抗爆响应分析与设计提供一定的理论基础。Abstract: Column is the main bearing member in bridge. It is the premise for analyzing the dynamic response of the bridge under blast loading to study the distribution law of blast load acted on bridge columns. Circular sectional bridge column has been selected as the research object, and the corresponding finite element models have been built by using the LS-DYNA software. When the height of burst is less than 0.3 times of the column height, the scaled distance is 0.5−2.1 m/kg1/3 and the column diameter is 0.15−1 m, the distributions of the blast loading impulse along column height and cross-section direction are obtained through numerical simulations. The influential parameters, e.g., the explosive equivalent, height of burst, explosion distance and sectional diameter, have been considered. It is derived that, along the column height, when the contact burst and the height of burst is 0.1 times of the column height, the blast loading impulse on the column front surface approximately follows the " Single linear” distribution. When the height of burst is 0.2 and 0.3 times of the column height, the blast loading impulse approximately follows the " Double linear” distribution. Along the cross-section direction, the ratio of the average net blast loading impulse to the blast impulse on the column front surface is a constant. Furthermore, the resultant net blast loading impulse of bridge column has been obtained, which can put some theoretical basis for blast-resistant analysis and design of bridge columns.
-
Key words:
- bridge column /
- blast loading /
- circular section /
- distribution law /
- numerical simulation
-
表 1 刚体材料模型参数
Table 1. Parameters for rigid material model
ρ/(kg·m−3) E/GPa v 3×103 210 0.3 注:ρ为密度;E为弹性模量;v为泊松比。 表 2 空气材料模型及状态方程参数
Table 2. Parameters for air material model and equation of state
ρ/(kg·m−3) c0 c1 c2 c3 c4 c5 c6 E0/(J·m−3) 1.29 0 0 0 0 0.4 0.4 0 0.25 注:ρ 为密度;E 为弹性模量。 表 3 TNT炸药材料模型及状态方程参数
Table 3. Parameters for TNT material model and equation of state
ρ/(kg·m−3) D/(m·s−1) pCJ/GPa A/GPa B/GPa R1 R2 ω E0 /(MJ·m−3) V 1.63×103 6.93×103 21 371 3.23 4.15 0.95 0.3 7 1 注: 为密度;D 为爆轰速度;pCJ 为C-J爆压。 -
[1] 张涛. 爆炸荷载作用下的桥梁结构特性[D]. 上海: 同济大学, 2013.Zhang Tao. Structural characteristics of bridge under blast loads [D]. Shanghai: Tongji University, 2013. [2] Federal Highway Administration. FOCUS: Accelerating Infrastructure Innovations, Publication No. FHWA-HRT-06-028 [EB/OL]. (2017-06-27)[2018-06-01]. http://www.fhwa.dot.gov/publications/focus/06aug/02.cfm. [3] 翟璐. 沙特持续空袭也门致桥梁炸毁[N/OL]. (2015-04-22)[2018-06-01]. http://www.chinanews.com/tp/hd2011/2015/04-22/508170.shtml.ZHAI Lu. Saudi Arabia continuously attack Yemen lead to bridge dynamited [N/OL]. (2015-04-22)[2018-06-01]. http://www.chinanews.com/tp/hd2011/2015/04-22/508170.shtml. [4] 唐彪. 钢筋混凝土墩柱的抗爆性能试验研究[D]. 南京: 东南大学, 2016.TANG Biao. Experimental investigation of reinforced concrete bridge piers under blast loading [D]. Nanjing: Southeast University, 2016. [5] WILLIAMSON E B, BAYRAK O, WILLIAMS G, et al. Blast-resistant highway bridges: design and detailing guidelines [M]. Washington D C: The National Academies Press, 2010. [6] TANG E K C, HAO H. Numerical simulation of a cable-stayed bridge response to blast loads, Part I: model development and response calculations [J]. Engineering Structures, 2010, 32(10): 3180–3192. DOI: 10.1016/j.engstruct.2010.06.007. [7] HAO H, TANG E K C. Numerical simulation of a cable-stayed bridge response to blast loads, Part Ⅱ: damage prediction and FRP strengthening [J]. Engineering Structures, 2010, 32(10): 3193–3205. DOI: 10.1016/j.engstruct.2010.06.006. [8] ISLAM A, YAZDANI N. Performance of AASHTO girder bridges under blast loading [J]. Engineering Structures, 2008, 30(7): 1922–1937. DOI: 10.1016/j.engstruct.2007.12.014. [9] WINGET D G, MARCHAND K A, WILLIAMSON E B. Analysis and design of critical bridges subjected to blast loads [J]. Journal of Structural Engineering, 2005, 131(8): 1243–1255. DOI: 10.1061/(ASCE)0733-9445(2005)131:8(1243). [10] WILLIAMS G D, WILLIAMSON E B. Response of reinforced concrete bridge columns subjected to blast loads [J]. Journal of Structural Engineering, 2015, 137(9): 903–913. DOI: 10.1061/(ASCE)ST.1943-541X.0000440. [11] AASHTO. AASHTO LRFD Bridge design specification [S]. Washington D C: American Association of State Highway and Transportation officials, 2005: 34−36. [12] BRUNEAU M, FUJIKURA S, Diego L et al. Multihazard-resistant highway bridge pier [C] // Fifth National Seismic Conference on Bridges and Highways. San Francisco: Federal Highway Administration, 2006: 25-28. [13] QASRAWI Y, HEFFERNAN P J, FAM A. Numerical modeling of concrete-filled FRP tubes’ dynamic behavior under blast and impact loading [J]. Journal of Structural Engineering, 2016, 142(2): 04015106. DOI: 10.1061/(ASCE)ST.1943-541X.0001370. [14] LI M H, ZONG Z H, LIU L, et al. Experimental and numerical study on damage mechanism of CFDST bridge columns subjected to contact explosion [J]. Engineering Structures, 2018, 159: 265–276. DOI: 10.1016/j.engstruct.2018.01.006. [15] WILLIAMS G D, WILLIAMSON E B. Procedure for predicting blast loads acting on bridge columns [J]. Journal of Bridge Engineering, 2012, 17(3): 490–499. DOI: 10.1061/(ASCE)BE.1943-5592.0000265. [16] FUJIKURA S, BRUNEAU M, LOPEZ-GARCIA D. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading [J]. Journal of Bridge Engineering, 2008, 13(6): 586–594. DOI: 10.1061/(ASCE)1084-0702(2008)13:6(586). [17] QASRAWI Y, HEFFERNAN P J, FAM A. Numerical determination of equivalent reflected blast parameters acting on circular cross sections [J]. International Journal of Protective Structures, 2015, 6(1): 1–22. DOI: 10.1260/2041-4196.6.1.1. [18] 师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D]. 天津: 天津大学, 2009.SHI Yanchao. Dynamic response and damage mechanism of reinforced concrete structures under blast loading [D]. Tianjin: Tianjin University, 2009. [19] ZHANG F R, WU C Q, ZHAO X L, et al. Numerical modeling of concrete-filled double-skin steel square tubular columns under blast loading [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): B4015002. DOI: 10.1061/(ASCE) CF.1943-5509.0000749. [20] 孙珊珊. 爆炸荷载下钢管混凝土柱抗爆性能研究[D]. 西安: 长安大学, 2013.SUN Shanshan. Investigation on dynamic response of CFST columns subjected to blast loading [D]. Xi’an: Chang’an University, 2013. [21] HALLQUIST J O. LS-DYNA keyword user's manual [M]. Version970. Livermore Software Technology Corporation, 2007. [22] 张守中. 爆炸与冲击动力学[M]. 北京: 兵器工业出版社, 1993.ZHANG Shouzhong. Explosion and shock dynamics [M]. Beijing: Weapon Industry Press, 1993. [23] REMENNIKOV A M, UY B. Explosive testing and modelling of square tubular steel columns for near-field detonations [J]. Journal of Constructional Steel Research, 2014, 101(101): 290–303. DOI: 10.1016/j.jcsr.2014.05.027. [24] HENRYCH J, MAJOR R. The dynamics of explosion and its use [M]. Amsterdam: Elsevier, 1979.