爆炸荷载在圆截面桥梁墩柱上的分布规律

彭玉林 吴昊 方秦

彭玉林, 吴昊, 方秦. 爆炸荷载在圆截面桥梁墩柱上的分布规律[J]. 爆炸与冲击, 2019, 39(12): 122201. doi: 10.11883/bzycj-2018-0317
引用本文: 彭玉林, 吴昊, 方秦. 爆炸荷载在圆截面桥梁墩柱上的分布规律[J]. 爆炸与冲击, 2019, 39(12): 122201. doi: 10.11883/bzycj-2018-0317
PENG Yulin, WU Hao, FANG Qin. Blast loading distributions on the circular sectional bridge columns[J]. Explosion And Shock Waves, 2019, 39(12): 122201. doi: 10.11883/bzycj-2018-0317
Citation: PENG Yulin, WU Hao, FANG Qin. Blast loading distributions on the circular sectional bridge columns[J]. Explosion And Shock Waves, 2019, 39(12): 122201. doi: 10.11883/bzycj-2018-0317

爆炸荷载在圆截面桥梁墩柱上的分布规律

doi: 10.11883/bzycj-2018-0317
基金项目: 国家自然科学基金(51522813)
详细信息
    作者简介:

    彭玉林(1995- ),男,硕士研究生,happyasam@163.com

    通讯作者:

    吴 昊(1981- ),男,博士,教授,博导,abrahamhao@126.com

  • 中图分类号: O383

Blast loading distributions on the circular sectional bridge columns

  • 摘要: 墩柱是桥梁结构的主要承载构件,研究爆炸荷载在墩柱上的分布规律是分析爆炸荷载作用下桥梁结构动态响应的前提。以圆截面桥梁墩柱为研究对象,基于LS-DYNA软件建立了桥梁墩柱的有限元模型,综合考虑炸药当量、爆心高度、爆炸距离和墩柱直径等影响因素,基于数值模拟得到爆心高度低于0.3倍墩柱高度,比例距离为0.5~2.1 m/kg1/3和墩柱直径为0.15~1 m时,爆炸荷载冲量沿墩柱高度和横截面方向上的分布。结果表明:沿墩柱高度方向,地面爆炸或爆心高度为0.1倍柱高时,墩柱前表面冲量近似“单线性”分布,当爆心高度距地面0.2和0.3倍柱高时,墩柱前表面冲量近似“双线性”分布;沿横截面方向的平均净冲量与其前表面冲量之比为常数。基于上述爆炸荷载冲量分布规律,进一步提出了爆炸荷载作用在桥梁墩柱上总净冲量的计算方法,从而为桥梁墩柱抗爆响应分析与设计提供一定的理论基础。
  • 图  1  爆炸荷载作用下倒塌的桥梁[2-3]

    Figure  1.  Collapse of bridges under blast loading[2-3]

    图  2  SC-1墩柱爆炸试验布置[20]

    Figure  2.  SC-1 bridge column blast test setup[20]

    图  3  有限元模型

    Figure  3.  Finite element model

    图  4  爆炸冲击波传播云图

    Figure  4.  Blast wave propagation contour

    图  5  各测点反射超压时程曲线的试验和数值模拟结果对比

    Figure  5.  Comparisons of the experimental and numerical simulated reflected overpressure time-history for each gauge

    图  6  数值模拟中墩柱表面测点分布[10, 15]

    Figure  6.  Gauging points in numerical simulation[10, 15]

    图  7  不同爆心高度时爆炸荷载冲量沿墩柱高度和横截面方向的分布(Z=1.1 m/kg1/3)

    Figure  7.  Blast loading impulse distributions along column height and cross-section directions for different heights of burst (Z=1.1 m/kg1/3)

    图  8  柱前表面冲量分布的简化模型

    Figure  8.  Simplified models for blast loading impulse distributions on the column front surface

    图  9  不同比例距离下的柱前表面冲量(hb/Hm=0)

    Figure  9.  Blast loading impulses on the column front surface for different scaled distances (hb/Hm=0)

    图  10  不同比例距离下的柱前表面冲量(hb/Hm=0.1)

    Figure  10.  Blast loading impulses on the column front surface for different scaled distances (hb/Hm=0.1)

    图  11  不同比例距离下的柱前表面冲量(hb/Hm=0.2)

    Figure  11.  Blast loading impulses on the column front surface for different scaled distances (hb/Hm=0.2)

    图  12  不同比例距离下的柱前表面冲量(hb/Hm=0.3)

    Figure  12.  Blast loading impulses on the column front surface for different scaled distances (hb/Hm=0.3)

    图  13  αZD的变化曲线

    Figure  13.  Variation of α with Z and D

    图  14  净冲量的一般计算流程

    Figure  14.  General calculation process of the net impulse

    表  1  刚体材料模型参数

    Table  1.   Parameters for rigid material model

    ρ/(kg·m−3)E/GPav
    3×1032100.3
     注:ρ为密度;E为弹性模量;v为泊松比。
    下载: 导出CSV

    表  2  空气材料模型及状态方程参数

    Table  2.   Parameters for air material model and equation of state

    ρ/(kg·m−3)c0c1c2c3c4c5c6E0/(J·m−3)
    1.2900000.40.400.25
     注:ρ 为密度;E 为弹性模量。
    下载: 导出CSV

    表  3  TNT炸药材料模型及状态方程参数

    Table  3.   Parameters for TNT material model and equation of state

    ρ/(kg·m−3)D/(m·s−1)pCJ/GPaA/GPaB/GPaR1R2ωE0 /(MJ·m−3)V
    1.63×1036.93×103213713.234.150.950.371
     注:为密度;D 为爆轰速度;pCJ 为C-J爆压。
    下载: 导出CSV
  • [1] 张涛. 爆炸荷载作用下的桥梁结构特性[D]. 上海: 同济大学, 2013.

    Zhang Tao. Structural characteristics of bridge under blast loads [D]. Shanghai: Tongji University, 2013.
    [2] Federal Highway Administration. FOCUS: Accelerating Infrastructure Innovations, Publication No. FHWA-HRT-06-028 [EB/OL]. (2017-06-27)[2018-06-01]. http://www.fhwa.dot.gov/publications/focus/06aug/02.cfm.
    [3] 翟璐. 沙特持续空袭也门致桥梁炸毁[N/OL]. (2015-04-22)[2018-06-01]. http://www.chinanews.com/tp/hd2011/2015/04-22/508170.shtml.

    ZHAI Lu. Saudi Arabia continuously attack Yemen lead to bridge dynamited [N/OL]. (2015-04-22)[2018-06-01]. http://www.chinanews.com/tp/hd2011/2015/04-22/508170.shtml.
    [4] 唐彪. 钢筋混凝土墩柱的抗爆性能试验研究[D]. 南京: 东南大学, 2016.

    TANG Biao. Experimental investigation of reinforced concrete bridge piers under blast loading [D]. Nanjing: Southeast University, 2016.
    [5] WILLIAMSON E B, BAYRAK O, WILLIAMS G, et al. Blast-resistant highway bridges: design and detailing guidelines [M]. Washington D C: The National Academies Press, 2010.
    [6] TANG E K C, HAO H. Numerical simulation of a cable-stayed bridge response to blast loads, Part I: model development and response calculations [J]. Engineering Structures, 2010, 32(10): 3180–3192. DOI: 10.1016/j.engstruct.2010.06.007.
    [7] HAO H, TANG E K C. Numerical simulation of a cable-stayed bridge response to blast loads, Part Ⅱ: damage prediction and FRP strengthening [J]. Engineering Structures, 2010, 32(10): 3193–3205. DOI: 10.1016/j.engstruct.2010.06.006.
    [8] ISLAM A, YAZDANI N. Performance of AASHTO girder bridges under blast loading [J]. Engineering Structures, 2008, 30(7): 1922–1937. DOI: 10.1016/j.engstruct.2007.12.014.
    [9] WINGET D G, MARCHAND K A, WILLIAMSON E B. Analysis and design of critical bridges subjected to blast loads [J]. Journal of Structural Engineering, 2005, 131(8): 1243–1255. DOI: 10.1061/(ASCE)0733-9445(2005)131:8(1243).
    [10] WILLIAMS G D, WILLIAMSON E B. Response of reinforced concrete bridge columns subjected to blast loads [J]. Journal of Structural Engineering, 2015, 137(9): 903–913. DOI: 10.1061/(ASCE)ST.1943-541X.0000440.
    [11] AASHTO. AASHTO LRFD Bridge design specification [S]. Washington D C: American Association of State Highway and Transportation officials, 2005: 34−36.
    [12] BRUNEAU M, FUJIKURA S, Diego L et al. Multihazard-resistant highway bridge pier [C] // Fifth National Seismic Conference on Bridges and Highways. San Francisco: Federal Highway Administration, 2006: 25-28.
    [13] QASRAWI Y, HEFFERNAN P J, FAM A. Numerical modeling of concrete-filled FRP tubes’ dynamic behavior under blast and impact loading [J]. Journal of Structural Engineering, 2016, 142(2): 04015106. DOI: 10.1061/(ASCE)ST.1943-541X.0001370.
    [14] LI M H, ZONG Z H, LIU L, et al. Experimental and numerical study on damage mechanism of CFDST bridge columns subjected to contact explosion [J]. Engineering Structures, 2018, 159: 265–276. DOI: 10.1016/j.engstruct.2018.01.006.
    [15] WILLIAMS G D, WILLIAMSON E B. Procedure for predicting blast loads acting on bridge columns [J]. Journal of Bridge Engineering, 2012, 17(3): 490–499. DOI: 10.1061/(ASCE)BE.1943-5592.0000265.
    [16] FUJIKURA S, BRUNEAU M, LOPEZ-GARCIA D. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading [J]. Journal of Bridge Engineering, 2008, 13(6): 586–594. DOI: 10.1061/(ASCE)1084-0702(2008)13:6(586).
    [17] QASRAWI Y, HEFFERNAN P J, FAM A. Numerical determination of equivalent reflected blast parameters acting on circular cross sections [J]. International Journal of Protective Structures, 2015, 6(1): 1–22. DOI: 10.1260/2041-4196.6.1.1.
    [18] 师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D]. 天津: 天津大学, 2009.

    SHI Yanchao. Dynamic response and damage mechanism of reinforced concrete structures under blast loading [D]. Tianjin: Tianjin University, 2009.
    [19] ZHANG F R, WU C Q, ZHAO X L, et al. Numerical modeling of concrete-filled double-skin steel square tubular columns under blast loading [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): B4015002. DOI: 10.1061/(ASCE) CF.1943-5509.0000749.
    [20] 孙珊珊. 爆炸荷载下钢管混凝土柱抗爆性能研究[D]. 西安: 长安大学, 2013.

    SUN Shanshan. Investigation on dynamic response of CFST columns subjected to blast loading [D]. Xi’an: Chang’an University, 2013.
    [21] HALLQUIST J O. LS-DYNA keyword user's manual [M]. Version970. Livermore Software Technology Corporation, 2007.
    [22] 张守中. 爆炸与冲击动力学[M]. 北京: 兵器工业出版社, 1993.

    ZHANG Shouzhong. Explosion and shock dynamics [M]. Beijing: Weapon Industry Press, 1993.
    [23] REMENNIKOV A M, UY B. Explosive testing and modelling of square tubular steel columns for near-field detonations [J]. Journal of Constructional Steel Research, 2014, 101(101): 290–303. DOI: 10.1016/j.jcsr.2014.05.027.
    [24] HENRYCH J, MAJOR R. The dynamics of explosion and its use [M]. Amsterdam: Elsevier, 1979.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  4713
  • HTML全文浏览量:  1673
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-27
  • 修回日期:  2018-11-27
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回