隧道爆破现场高速图像采集与精确控制爆破参数研究

龚敏 吴昊骏

龚敏, 吴昊骏. 隧道爆破现场高速图像采集与精确控制爆破参数研究[J]. 爆炸与冲击, 2019, 39(5): 051101. doi: 10.11883/bzycj-2018-0319
引用本文: 龚敏, 吴昊骏. 隧道爆破现场高速图像采集与精确控制爆破参数研究[J]. 爆炸与冲击, 2019, 39(5): 051101. doi: 10.11883/bzycj-2018-0319
GONG Min, WU Haojun. High-speed photography image acquisition system in tunnel blasting and parameters study on precisely controlled blasting[J]. Explosion And Shock Waves, 2019, 39(5): 051101. doi: 10.11883/bzycj-2018-0319
Citation: GONG Min, WU Haojun. High-speed photography image acquisition system in tunnel blasting and parameters study on precisely controlled blasting[J]. Explosion And Shock Waves, 2019, 39(5): 051101. doi: 10.11883/bzycj-2018-0319

隧道爆破现场高速图像采集与精确控制爆破参数研究

doi: 10.11883/bzycj-2018-0319
基金项目: 国家自然科学基金(51678048);重庆市科技开发计划重点项目(cstc2014yykfB30002)
详细信息
    作者简介:

    龚 敏(1963- ),男,博士,教授,博导,gongmin@ces.ustb.edu.cn

  • 中图分类号: O389

High-speed photography image acquisition system in tunnel blasting and parameters study on precisely controlled blasting

  • 摘要: 受隧道内环境恶劣、相机防护等诸多因素制约,隧道现场爆破的高速图像采集与分析尚未实现,而这对精准控制爆破参数非常重要。以重庆某隧道为研究背景,在解决现场测试技术难题基础上,得到隧道爆破过程完整图像并同时获取爆破振动数据;据此分析了隧道爆破岩石破裂现象:炸药起爆15~18 ms后岩体移动,21 ms左右形成空洞并不断扩展后抛出;探讨了同对掏槽眼爆破协同作用时间与微差降振时间之间的矛盾,研究表明兼顾二者作用的起爆时差为8~50 ms;通过分析爆破裂隙扩展曲线特点并结合实测振动数据,确定起爆54 ms时形成第二临空面,较按过去方法确定的时间更精确,以此进行现场掏槽段位设计的降振效果良好;研究结果可为精准控制爆破提供参考。
  • 图  1  高速摄像电控与数据处理系统图

    Figure  1.  Electronic control and data processing system of high-speed camera

    图  2  现场相机控制布设方框

    Figure  2.  Camera control and layout on field

    图  3  上台阶炮孔布设及爆破参数设计图

    Figure  3.  Holes layout of upper bench and design of blasting parameters

    图  4  掏槽雷管样本各段延时范围

    Figure  4.  Initiation time delay ranges of detonators samples per period for cutting

    图  5  隧道现场爆破掏槽区岩石破裂过程图

    Figure  5.  Rock failure processes of cutting blasting on field

    图  6  2015.10.16爆破振动曲线(掏槽区)

    Figure  6.  Blast-induced vibration curve on October 16, 2015 (cutting zone)

    图  7  炮孔起爆初期岩体的移动方向和范围

    Figure  7.  The moving direction and ranges of the rock mass at the initial stage of blasting

    图  8  掏槽区岩体移动面积随时间变化图

    Figure  8.  Moving area change of rock mass with time in cutting blasting

    图  9  移动岩体占掏槽区面积比例随时间变化图

    Figure  9.  The area proportion of moving rock mass in cutting zone change with time

    图  10  隧道单孔单自由面爆破正上方地面振动曲线图

    Figure  10.  Ground vibration curve which is directly above a single shot with single free surface

    图  11  两孔不同微差起爆时间对应的合成振速图

    Figure  11.  Superposition vibration velocity corresponding to two different millisecond delay times between two holes

    图  12  计算合成振动曲线与实测振动曲线的对比

    Figure  12.  Comparation of the calculated superposed vibration curve and the measured one

    图  13  典型起爆时刻空洞尺寸变化的计算结果图

    Figure  13.  Calculation results of the cave’s size change at typical initiation time

    图  14  两个方向爆破空洞长度随时间变化图

    Figure  14.  Cave size change with time in two directions

    图  15  空洞尺寸、振速、起爆时间之间动态关系图

    Figure  15.  Dynamic relationship among cave size, vibration velocity and initiation time

    图  16  优化后的隧道掏槽爆破设计与实测振动曲线图

    Figure  16.  Optimized cut blasting design and vibration curve measured in the tunnel

  • [1] REINHARDT H W, DALLY J W. Dynamic photoelastic investigation of stress wave interaction with a bench face [J]. Transactions Society of Mining Engineer, AIME, 1971, 250(1): 35–42.
    [2] DALLY J W. Dynamic photoelasticity and its application to stress wave propagation, fracture mechanics and fracture control [M] // Lagarde A. Static and Dynamic Photoelasticity and Caustic: Recent Developments, 1987: 247−406.
    [3] BRINKMANN J R. The application of high speed photography to explosive rock breaking research in underground mining [C] // The 17th International on High Speed Photography and Photonics. Pretoria, South Africa, 1987: 38−54.
    [4] CHIAPPETTA A R F, MAMMELE M E. Use of high-speed motion picture photography in blast evaluation and design [C] // The 31st Annual Technical Symposium. San Diego, CA, United States, 1988: 319−336.
    [5] 黄政华, 吴灵光, 吴其苏. 用高速摄影法确定大区爆破微差时间的研究 [J]. 爆炸与冲击, 1992, 12(1): 115–109. doi: 10.11883/1001-1455(1992)01-0115-05

    HUANG Zhenghua, WU Lingguang, WU Qisu. Study of millisecond-time in large area differential blasting by high-speed photograph [J]. Explosion and Shock Waves, 1992, 12(1): 115–109. doi: 10.11883/1001-1455(1992)01-0115-05
    [6] 杨仁树, 王雁冰. 切缝药包不耦合装药爆破爆生裂纹动态断裂效应的试验研究 [J]. 岩石力学与工程学报, 2013, 32(7): 1337–1343. DOI: 10.3969/j.issn.1000-6915.2013.07.007.

    YANG Renshu, WANG Yanbing. Experimental study of dynamic fracture effect of blasting crack in soloed cartridge decoupling charge blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1337–1343. DOI: 10.3969/j.issn.1000-6915.2013.07.007.
    [7] 李清, 于强, 朱各勇, 等. 不同药量的切缝药包双孔爆破裂纹扩展规律试验 [J]. 岩石力学与工程学报, 2017, 36(9): 2205–2212. DOI: 10.13722/j.cnki.jrme.2017.0164.

    LI Qing, YU Qiang, ZHU Geyong, et al. Experimental study of crack propagation under two-hole slotted cartridge blasting with different amounts of charge [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2205–2212. DOI: 10.13722/j.cnki.jrme.2017.0164.
    [8] 何理, 钟冬望, 李琳娜, 等. 岩体爆破综合实验研究系统及其应用 [J]. 矿冶工程, 2017, 37(2): 36–45.

    HE Li, ZHONG Dongwang, LI Linna, et al. A comprehensive experimental research system for rock blasting and its application [J]. Mining and Metallurgical Engineering, 2017, 37(2): 36–45.
    [9] 张继春, 肖正学, 郑爽英, 等. 含软弱夹层岩体爆破的夹层土运动特征试验研究 [J]. 岩石力学与工程学报, 2009, 28(8): 1697–1703. DOI: 10.3321/j.issn:1000-6915.2009.08.022.

    ZHANG Jichun, XIAO Zhengxue, ZHENG Shuangying, et al. Experimental study of motion characteristics of weak intercalation in rock mass blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1697–1703. DOI: 10.3321/j.issn:1000-6915.2009.08.022.
    [10] 朱宽, 钟冬望, 陈浩, 等. 210 m钢筋砼烟囱爆破倒塌过程测量分析 [J]. 武汉科技大学学报, 2013, 36(4): 311–315.

    ZHU Kuan, ZHONG Dongwang, CHEN Hao, et al. Measurements on the collapse process of 210 m reinforced concrete chimney by blasting demolition [J]. Journal of Wuhan University of Science and Technology, 2013, 36(4): 311–315.
    [11] 黄永辉, 刘殿书, 李胜林, 等. 高台阶抛掷爆破速度规律的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 495–500. DOI: 10.11883/1001-1455(2014)04-0495-06.

    HUANG Yonghui, LIU Dianshu, LI Shenglin, et al. Numerical simulation on pin-point blasting of sloping surface [J]. Explosion and Shock Waves, 2014, 34(4): 495–500. DOI: 10.11883/1001-1455(2014)04-0495-06.
    [12] 李祥龙, 胡涛, 张智宇, 等. 基于高速摄影技术爆破鼓包运动规律的研究 [J]. 北京理工大学学报, 2015, 35(12): 1228–1232. DOI: 10.15918/j.tbit1001-0645.2015.12.004.

    LI Xianglong, HU Tao, ZHANG Zhiyu, et al. Bulging movement in explosion based on high speed photography technology [J]. Transactions of Beijing Institute of Technology, 2015, 35(12): 1228–1232. DOI: 10.15918/j.tbit1001-0645.2015.12.004.
    [13] 张建华, 俞雄志, 夏岸雄. 露天矿山爆破效果的高速影像分析 [J]. 矿业研究与开发, 2015, 35(9): 24–26. DOI: 10.13827/j.cnki.kyyk.2015.09.006.

    ZHANG Jianhua, YU Xiongzhi, XIA Anxiong. High-speed photography analysis on blasting effect in open-pit mine [J]. Mining Research and Development, 2015, 35(9): 24–26. DOI: 10.13827/j.cnki.kyyk.2015.09.006.
    [14] 龚敏, 邱燚可可, 孟祥栋, 等. 基于HHT的雷管实际延时识别法在城市环境微差爆破中的应用 [J]. 振动与冲击, 2015, 34(10): 206–212. DOI: 10.13465/j.cnki.jvs.2015.10.036.

    GONG Min, QIU Yikeke, MENG Xiangdong, et al. Identification method of detonator’s actual firing time delay based on HHT and its application in millisecond blasting under urban environment [J]. Journal of Vibration and Shock, 2015, 34(10): 206–212. DOI: 10.13465/j.cnki.jvs.2015.10.036.
    [15] 龚敏, 陈哲, 吴昊骏, 等. 掏槽药量与起爆时差的关系对隧道爆破合成振速的影响 [J]. 应用基础与工程科学学报, 2016, 24(6): 1110–1124. DOI: 10.16058/j.issn.1005-0930.2016.06.004.

    GONG Min, CHEN Zhe, WU Haojun, et al. Influence of correlation between cut basting charge and detonating interval time on superposition vibration velocity caused by millisecond blasting in tunnel [J]. Journal of Basic Science and Engineering, 2016, 24(6): 1110–1124. DOI: 10.16058/j.issn.1005-0930.2016.06.004.
  • 加载中
图(16)
计量
  • 文章访问数:  4574
  • HTML全文浏览量:  2418
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-29
  • 修回日期:  2018-10-24
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回