时程稳定性系数确定的边坡逐孔起爆孔间微差降振时间

周文海 梁瑞 陈金林 朱冕 陈鹏辉 楼晓明 王敦繁

周文海, 梁瑞, 陈金林, 朱冕, 陈鹏辉, 楼晓明, 王敦繁. 时程稳定性系数确定的边坡逐孔起爆孔间微差降振时间[J]. 爆炸与冲击, 2019, 39(8): 085202. doi: 10.11883/bzycj-2018-0337
引用本文: 周文海, 梁瑞, 陈金林, 朱冕, 陈鹏辉, 楼晓明, 王敦繁. 时程稳定性系数确定的边坡逐孔起爆孔间微差降振时间[J]. 爆炸与冲击, 2019, 39(8): 085202. doi: 10.11883/bzycj-2018-0337
ZHOU Wenhai, LIANG Rui, CHEN Jinlin, ZHU Mian, CHEN Penghui, LOU Xiaoming, WANG Dunfan. Millisecond time for reducing vibration between two holes for slope blasting determined by stability coefficient of time history[J]. Explosion And Shock Waves, 2019, 39(8): 085202. doi: 10.11883/bzycj-2018-0337
Citation: ZHOU Wenhai, LIANG Rui, CHEN Jinlin, ZHU Mian, CHEN Penghui, LOU Xiaoming, WANG Dunfan. Millisecond time for reducing vibration between two holes for slope blasting determined by stability coefficient of time history[J]. Explosion And Shock Waves, 2019, 39(8): 085202. doi: 10.11883/bzycj-2018-0337

时程稳定性系数确定的边坡逐孔起爆孔间微差降振时间

doi: 10.11883/bzycj-2018-0337
基金项目: 国家自然科学基金(51566010);甘肃省自然科学基金(B061709)
详细信息
    作者简介:

    周文海(1989- ),男,硕士,讲师,18394499554@139.com

    通讯作者:

    梁 瑞(1968- ),男,博士,教授,liangr@lut.cn

  • 中图分类号: O389; TU45

Millisecond time for reducing vibration between two holes for slope blasting determined by stability coefficient of time history

  • 摘要: 为了获得边坡逐孔爆破最佳降振微差时间,以某个实际边坡逐孔微差爆破施工现场为原型,先利用ANSYS建立二维静态模型,借助有限元折减法确定自然状态下的潜在滑动面和静态安全系数;基于已确定的二维潜在滑动面重新建立同尺寸同性质的三维逐孔微差爆破动态模型,利用LS-DYAN进行动力分析,整个过程分别设置同排3个炮孔0、17、25、42和65 ms等5种不同孔间微差起爆方式;同时,对该施工现场进行排、孔间(25 ms,17 ms)、(25 ms,25 ms)、(25 ms,42 ms)、(25 ms,65 ms)等4种微差时间控制的等比例相似小炮测振实验。提取模拟结果中3个炮孔同时起爆时滑面单元的应力数值代入极限平衡法计算公式,绘制了冲击载荷作用下边坡稳定性系数曲线,通过对曲线的理论分析发现,最佳降振微差时间约为48 ms;而三维数值模拟和测振实验结果均显示,孔间微差时间取42 ms时降振效果较佳。这说明,边坡稳定性系数曲线给出的微差时间与模拟和实验结果较为接近,可为今后边坡逐孔微差爆破降振研究提供参考。
  • 图  1  有限元法和极限平衡法

    Figure  1.  FEM and limit equilibrium method

    图  3  模型参数

    Figure  3.  Model parameters

    图  2  三维有限元计算模型

    Figure  2.  3D finite element model of slope

    图  4  二维模型网格划分

    Figure  4.  Mesh generation of 2D

    图  5  三维模型网格划分

    Figure  5.  Mesh generation of 3D

    图  6  塑性区域分布

    Figure  6.  Plastic regional distribution

    图  7  应力分布

    Figure  7.  Stress distribution

    图  8  微差起爆合速度衰减规律

    Figure  8.  Resultant velocity attenuation regularity of millisecond detonating

    图  9  边坡稳定性系数曲线

    Figure  9.  Slope stability coefficient curve

    图  10  不同孔间微差起爆时测点A合速度衰减规律

    Figure  10.  Resultant velocity attenuation regularity of measuring point A with different millisecond detonating

    表  1  折减算法

    Table  1.   Strength reduction method

    材料凝聚力/kPatanφ内摩擦角φ/(°)安全系数状态
    MAT12200.358 720.5501收敛
    MAT21100.179 310.2752收敛
    $ \vdots$$ \vdots$$ \vdots$$ \vdots$$ \vdots$$ \vdots$
    MAT880.00.130 47.4732.75收敛(塑性已经贯通)
    MAT97.910.129 07.3922.78不收敛
    下载: 导出CSV

    表  2  各种计算方式的安全系数

    Table  2.   Safety factor for each calculation method

    计算方法安全系数分析方法安全系数
    极限平衡法Circle slip method2.525
    Bishop2.505
    Janbu2.679
    有限元法Strength reduction FEM(2D)2.750
    Dynamic FEM(3D and t=0)2.610
    下载: 导出CSV

    表  3  不同孔间微差时间下监测点峰值速度

    Table  3.   Monitoring point’s peak speed at different hole millisecond time

    不同微差爆组测点Vx/(cm·s−1)Vy/(cm·s−1)Vz/(cm·s−1)Vs/(cm·s−1)
    (25 ms, 17 ms)A0.736 10.483 61.158 91.222 7
    B0.719 40.421 11.203 11.067 7
    C0.669 80.502 31.149 91.138 1
    D0.750 20.469 11.210 11.294 1
    (25 ms, 25 ms)A1.115 01.286 10.475 41.436 1
    B1.036 11.445 10.365 51.600 2
    C1.000 41.302 20.446 81.387 8
    D1.099 71.510 50.399 31.702 1
    (25 ms, 42 ms)A0.554 50.505 60.457 30.630 6
    B0.606 20.623 20.429 10.599 2
    C0.581 80.601 70.362 70.541 0
    D0.527 90.503 10.395 10.503 1
    (25 ms, 65 ms)A0.741 70.723 80.529 70.875 6
    B0.689 90.745 20.669 00.910 1
    C0.713 50.758 10.632 80.943 7
    D0.750 80.795 40.504 30.865 5
    下载: 导出CSV
  • [1] 楼晓明, 周文海, 简文彬, 等. 基于岩石破碎机理的微差爆破最佳延时控制 [J]. 哈尔滨工业大学学报, 2017, 49(2): 158–163. DOI: 10.11918/j.issn.0367-6234.2017.02.025.

    LOU Xiaoming, ZHOU Wenhai, JIAN Wenbin, et al. Millisecond blasting optimal time delay control based on rock breaking mechanism [J]. Journal of Harbin Institute of Technology, 2017, 49(2): 158–163. DOI: 10.11918/j.issn.0367-6234.2017.02.025.
    [2] 田振农, 孟祥栋, 王国欣. 城区隧道电子雷管起爆错相减震机理分析 [J]. 振动与冲击, 2012, 31(21): 108–111. DOI: 10.3969/j.issn.1000-3835.2012.21.022.

    TIAN Zhennong, MENG Xiangdong, WANG Guoxin. Mechanism analysis of fault-phase vibration reduction for tunnel blasting initiated by electronic detonators in city area [J]. Journal of Vibration and Shock, 2012, 31(21): 108–111. DOI: 10.3969/j.issn.1000-3835.2012.21.022.
    [3] JOHANSSON D, OUCHTERLONY F. Shock wave interactions in rock blasting: the use of short delays to improve fragmentation in model-scale [J]. Rock Mechanics and Rock Engineering, 2013, 46(1): 1–8. doi: 10.1007/s00603-012-0249-7
    [4] 龚敏, 陈哲, 吴昊骏, 等. 掏槽药量与起爆时差的关系对隧道爆破合成振速的影响 [J]. 应用基础与工程科学学报, 2016, 24(6): 1110–1124. DOI: 10.16058/j.issn.1005-0930.2016.06.004.

    GONG Min, CHEN Zhe, WU Haojun, et al. Influence of correlation between cut basting charge and detonating interval time on superposition vibration velocity caused by millisecond blasting in tunnel [J]. Journal of Basic Science and Engineering, 2016, 24(6): 1110–1124. DOI: 10.16058/j.issn.1005-0930.2016.06.004.
    [5] ANDERSON D A, WINZER S R, RITTER A P. On computer-aided seismic analysis and discrimina-teon [C] // Proceedings of 3rd International Symposium. Washington DC: 1987: 247−261.
    [6] 杨年华, 张乐. 爆破振动波叠加数值预测方法 [J]. 爆炸与冲击, 2012, 32(1): 84–90. DOI: 10.11883/1001-1455(2012)02-0084-07.

    YANG Nianhua, ZHANG Le. Blasting vibration waveform prediction method based on superposition principle [J]. Explosion and Shock Waves, 2012, 32(1): 84–90. DOI: 10.11883/1001-1455(2012)02-0084-07.
    [7] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用 [J]. 岩石力学与工程学报, 2004, 23(19): 3381–3388. doi: 10.3321/j.issn:1000-6915.2004.19.029

    ZHENG Yingren, ZHAO Shangyi. Application of strength reduction fem in soil and rock slope [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3381–3388. doi: 10.3321/j.issn:1000-6915.2004.19.029
    [8] 赵铮, 陶钢, 杜长星. 爆轰产物JWL状态方程应用研究 [J]. 高压物理学报, 2009, 23(4): 277–282. doi: 10.3969/j.issn.1000-5773.2009.04.007

    ZHAO Zheng, TAO Gang, DU Changxing. Application research on JWL equation of state of detonation products [J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 277–282. doi: 10.3969/j.issn.1000-5773.2009.04.007
    [9] GRIFFITHS D V, MARQUEZ R M. Three-dimensional slope stability analysis by elasto-plastic finite elements [J]. Geotechnique, 2007, 57(6): 537–546. doi: 10.1680/geot.2007.57.6.537
    [10] 赵尚毅, 郑颖人, 张玉芳. 有限元强度折减法中边坡失稳的判据探讨 [J]. 岩土力学, 2005, 26(2): 332–336. DOI: 10.3969/j.issn.1000-7598.2005.02.035.

    ZHAO Shangyi, ZHENG Yingren, ZHANG Yufang. Study on slope failure criterion in strength reduction finite element method [J]. Rock and Soil Mechanics, 2005, 26(2): 332–336. DOI: 10.3969/j.issn.1000-7598.2005.02.035.
    [11] SLOAN S W. Geotechnical stability analysis [J]. Geotechnique, 2013, 63(7): 531–572. doi: 10.1680/geot.12.RL.001
    [12] 刘柞秋, 周翠英, 董立国, 等. 边坡稳定及加固分析的有限元强度折减法 [J]. 岩土力学, 2005, 26(4): 558–561. DOI: 10.3969/j.issn.1000-7598.2005.04.010.

    LIU Zuoqiu, ZHOU Cuiying, DONG Liguo, et al. Slope stability and strengthening analysis by strength reduction FEM [J]. Rock and Soil Mechanics, 2005, 26(4): 558–561. DOI: 10.3969/j.issn.1000-7598.2005.04.010.
    [13] Griffiths D V, Lane P A. Slope stability analysis by finite element [J]. Geotechnique, 1999, 49(3): 387–403. doi: 10.1680/geot.1999.49.3.387
    [14] MATSUI T, SAN K C. Finite element slope stability analysis by shear strength reduction technique [J]. Soil and Foundation, 1992, 32(1): 59–70. doi: 10.3208/sandf1972.32.59
    [15] 李红, 宫必宁, 陈琰. 有限元强度折减法边坡失稳判据 [J]. 水利与建筑工程学报, 2007, 5(1): 79–82. doi: 10.3969/j.issn.1672-1144.2007.01.025

    LI Hong, GONG Bining, CHEN Yan. Study on criteria for evaluating stability of slope with fem based on shear strength reduction methods [J]. Journal of Water Resources and Architectural Engineering, 2007, 5(1): 79–82. doi: 10.3969/j.issn.1672-1144.2007.01.025
    [16] 楼晓明, 周文海, 简文彬, 等. 微差爆破振动波速度峰值-位移分布特征的延时控制 [J]. 爆炸与冲击, 2016, 36(6): 839–846. DOI: 10.11883/1001-1455(2016)06-0839-08.

    LOU Xiaoming, ZHOU Wenhai, JIAN Wenbin, et al. Control of delay time characterized by distribution of peak velocity-displacement vibration of millisecond blasting [J]. Explosion and Shock Waves, 2016, 36(6): 839–846. DOI: 10.11883/1001-1455(2016)06-0839-08.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  6779
  • HTML全文浏览量:  1497
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 修回日期:  2019-04-07
  • 网络出版日期:  2019-06-25
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回