椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析

王浩 潘鑫 武海军 皮爱国 李金柱 黄风雷

王浩, 潘鑫, 武海军, 皮爱国, 李金柱, 黄风雷. 椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析[J]. 爆炸与冲击, 2019, 39(10): 103203. doi: 10.11883/bzycj-2018-0350
引用本文: 王浩, 潘鑫, 武海军, 皮爱国, 李金柱, 黄风雷. 椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析[J]. 爆炸与冲击, 2019, 39(10): 103203. doi: 10.11883/bzycj-2018-0350
WANG Hao, PAN Xin, WU Haijun, PI Aiguo, LI Jinzhu, HUANG Fenglei. Energy dissipation analysis of elliptical truncated oval rigid projectilepenetrating stiffened plate[J]. Explosion And Shock Waves, 2019, 39(10): 103203. doi: 10.11883/bzycj-2018-0350
Citation: WANG Hao, PAN Xin, WU Haijun, PI Aiguo, LI Jinzhu, HUANG Fenglei. Energy dissipation analysis of elliptical truncated oval rigid projectilepenetrating stiffened plate[J]. Explosion And Shock Waves, 2019, 39(10): 103203. doi: 10.11883/bzycj-2018-0350

椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析

doi: 10.11883/bzycj-2018-0350
基金项目: 国防基础科研重点项目( 2016209A003,2016602B003)
详细信息
    作者简介:

    王 浩(1990- ),男,博士研究生,wangh@bit.edu.cn

    通讯作者:

    武海军(1974- ),男,教授,博导,wuhj@bit.edu.cn

  • 中图分类号: O385

Energy dissipation analysis of elliptical truncated oval rigid projectilepenetrating stiffened plate

  • 摘要: 为获得椭圆截面截卵形刚性弹体正贯穿加筋板的剩余速度,根据椭圆截面弹体贯穿靶板的破坏特征,认为贯穿过程中靶板的能量耗散方式主要为塞块剪切变形功与塞块动能、扩孔塑性变形功、花瓣动力功、花瓣弯曲变形功、靶板整体凹陷变形功、加强筋侧向凹陷变形功。推导了每种能量计算方法,计算中定量考虑了靶板扩孔、花瓣弯曲、凹陷变形的应变率效应。根据能量守恒关系,得到了椭圆截面弹体剩余速度和弹道极限速度预测公式。并通过实验结果对模型进行了验证。结果表明:考虑靶板应变硬化、应变率效应的贯穿模型可以准确预测弹体剩余速度;随着椭圆截面弹体长短轴之比的增大,靶板的弹道极限速度近似线性增大;长短轴之比小于3时,加筋板的主要耗能为花瓣弯曲变形能、整体凹陷变形能。
  • 图  1  着靶点位置

    Figure  1.  Impact locations

    图  2  椭圆截面弹体撞击单加筋板示意图

    Figure  2.  Schematic diagram of single stiffened plate impactedby elliptic section projectile

    图  3  加筋板变形破坏模式 [9]

    Figure  3.  Deformation and damage modes of stiffened plate

    图  4  靶板椭圆形扩孔变形示意图

    Figure  4.  Deformation diagram of elliptical hole enlargementof target plate

    图  5  截卵弹体贯穿薄板剖面

    Figure  5.  Plate perforated by truncated oval-nose projectiles

    图  6  椭圆形扩孔动力功计算原理图

    Figure  6.  Schematic diagram of dynamical workduring elliptical hole enlargement

    图  7  面板椭圆形整体凹陷变形计算原理图

    Figure  7.  Schematic diagram of elliptical dishing energy calculation

    图  8  加强筋侧向凹陷变形

    Figure  8.  Dishing deformation of stiffener

    图  9  无量纲弹道极限速度随${k_{{{ab}}}}$变化

    Figure  9.  Dimensionless ballistic limit velocity vs ${k_{{{ab}}}}$

    图  10  椭圆截面与“截面积等效”弹体各耗散能量比随${k_{{{ab}}}}$的变化

    Figure  10.  Variation of energy dissipation ratio of elliptical sectionand "section equivalent" projectiles with ${k_{{{ab}}}}$

    图  11  平板和加筋板各能量耗散比随${k_{{{ab}}}}$的变化

    Figure  11.  Energy dissipation ratio of flat and stiffened plates vs ${k_{{{ab}}}}$

    表  1  截卵形弹体几何参数

    Table  1.   Geometry parameters oftruncated oval-nose projectiles

    b1/mmb0/mmM/gL/mmCRH
    12.54165.327.51.42
    下载: 导出CSV

    表  2  加筋板结构和力学参数

    Table  2.   Geometry and mechanical parameters of stiffened plate

    hp/mmhs/mmbs/mmρ/(g·cm−3)σ0/MPaσy/MPaσu/MPaεfDP
    5,102557.85410~420510585~6100.21.14 ×1045.8
    下载: 导出CSV

    表  3  贯穿实验剩余速度与模型预测结果对比

    Table  3.   Comparison between the theoretical and experimental residual velocities

    实验板型mn${v_0}/({\rm{m}} \cdot {{\rm{s}}^{ - 1}})$${v_{\rm{f}}}/({\rm{m}} \cdot {{\rm{s}}^{ - 1}})$$\Delta r/{\rm{mm}}$${w_0}/{\rm{mm}}$${v_{\rm{f}}}/({\rm{m}} \cdot {{\rm{s}}^{ - 1}})$η/%${v_{\rm{f}}}/({\rm{m}} \cdot {{\rm{s}}^{ - 1}})$η/%
    实验参数刚塑性模型本文模型
    1F0024413315180.535.71135.21.65
    5SI00.524715612.510191.322.63151.82.69
    10SI*10388144 5252.375.21140.82.22
    13CS1142724012.520323.734.87258.27.85
    15CS1141715712.518311.898.60243.555.10
    16QS0024712816184.043.75139.99.30
    下载: 导出CSV
  • [1] 杜忠华, 曾国强, 余春祥, 等. 异型侵彻体垂直侵彻半无限靶板试验研究 [J]. 弹道学报, 2008, 20(1): 19–21.

    DU Zhonghua, ZENG Guoqiang, YU Chunxiang, et al. Experimental research of novel penetrator vertically penetrating semi- infinite target [J]. Journal of Ballistics, 2008, 20(1): 19–21.
    [2] 杜忠华, 朱建生, 王贤治, 等. 异型侵彻体垂直侵彻半无限靶板的分析模型 [J]. 兵工学报, 2009, 30(4): 403–407. DOI: 10.3321/j.issn:1000-1093.2009.04.005.

    DU Zhonghua, ZHU Jiansheng, WANG Xianzhi, et al. Analytical model on non-circular penetrator impacting semi-infinite target perpendicularly [J]. Acta Armamentarii, 2009, 30(4): 403–407. DOI: 10.3321/j.issn:1000-1093.2009.04.005.
    [3] 高光发, 李永池, 刘卫国, 等. 长杆弹截面形状对垂直侵彻深度的影响 [J]. 兵器材料科学与工程, 2011, 34(3): 5–8. DOI: 10.3969/j.issn.1004-244X.2011.03.002.

    GAO Guangfa, LI Yongchi, LIU Weiguo, et al. Influence of the cross-section shapes of long rod projectile on the vertical penetration depth [J]. Ordnance Material Science and Engineering, 2011, 34(3): 5–8. DOI: 10.3969/j.issn.1004-244X.2011.03.002.
    [4] BLESS S J, LITTLEFIELD D L, ANDERSON C E, et al. The penetration of non-circular cross-section penetrators [C] // Proceedings of the 15th International Symposium on Ballistics. Jerusalem, Israel: IBS, 1995: 21−24.
    [5] BLESS S J. Penetration mechanics of non-circular rods [C] // AIP Conference Proceedings. AIP, 1996: 1119−1122.
    [6] 王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.

    WANG Wenjie, ZHANG Xianfeng, DENG jiajie, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.
    [7] LANDKOF B, GOLDSMITH W. Petalling of thin, metallic plates during penetration by cylindro-conical projectiles [J]. International Journal of Solids & Structures, 1985, 21(3): 245–266. DOI: 10.1016/0020-7683(85)90021-6.
    [8] 张中国, 黄风雷, 段卓平, 等. 弹体侵彻带加强筋结构靶的实验研究 [J]. 爆炸与冲击, 2004, 24(5): 431–436. DOI: 10.3321/j.issn:1001-1455.2004.05.009.

    ZHANG Zhongguo, HUANG Fenglei, DUAN Zhuoping, et al. The experimental research for projectile penetrating the structural target with rebar [J]. Explosion and Shock Waves, 2004, 24(5): 431–436. DOI: 10.3321/j.issn:1001-1455.2004.05.009.
    [9] CHEN Y, WANG Y, TANG P, et al. Impact characteristics of stiffened plates penetrated by sub-ordnance velocity projectiles [J]. Journal of Constructional Steel Research, 2008, 64(6): 634–643. DOI: 10.1016/j.jcsr.2007.12.006.
    [10] SONG W, NING J, WANG J. Normal impact of truncated oval-nosed projectiles on stiffened plates [J]. International Journal of Impact Engineering, 2008, 35(9): 1022–1034. DOI: 10.1016/j.ijimpeng.2007.05.008.
    [11] 徐双喜, 吴卫国, 李晓彬, 等. 截锥形弹穿甲单加筋板的破坏特性 [J]. 爆炸与冲击, 2011, 31(1): 62–68. DOI: 10.11883/1001-1455(2011)01-0062-07.

    XU Shuangxi, WU Weiguo, LI Xiaobin, et al. Falure characteristics of a conical projectile penetrating single stiffened plate [J]. Explosion and Shock Waves, 2011, 31(1): 62–68. DOI: 10.11883/1001-1455(2011)01-0062-07.
    [12] HE Q, XIE Z, XUAN H, et al. Ballistic testing and theoretical analysis for perforation mechanism of the fan casing and fragmentation of the released blade [J]. International Journal of Impact Engineering, 2016, 91: 80–93. DOI: 10.1016/j.ijimpeng.2016.01.001.
    [13] ZHAN T, LI J, LV S, et al. Residual velocity for the truncated ogival-nose projectile into stiffened plates [J]. Ships and Offshore Structures, 2015, 11(6): 636–644. DOI: 10.1080/17445302.2015.1041441.
    [14] 黄涛, 吴卫国, 李晓彬, 等. 截锥形弹体斜穿甲花瓣型破坏模型 [J]. 振动与冲击, 2010, 29(2): 125–127. DOI: 10.3969/j.issn.1000-3835.2010.02.028.

    HUANG Tao, WU Weiguo, LI Xiaobin, et al. Oblique armor-piercing effect of a truncated cylindro-conical projectile [J]. Journal of Vibration and Shock, 2010, 29(2): 125–127. DOI: 10.3969/j.issn.1000-3835.2010.02.028.
    [15] XU S X, WU W G, LI X B, et al. Petal failure characteristics of a conical projectile penetrating a thin plate at high oblique angle [J]. Journal of Shanghai Jiaotong University (Science), 2010, 15(4): 434–440. DOI: 10.1007/s12204-010-1029-8.
    [16] WU Q G, WEN H M. Petalling of a thin metal plate struck by a conical-nosed projectile [J]. Acta Mechanica Solida Sinica, 2015, 28(5): 568–577. DOI: 10.1016/S0894-9166(15)30050-1.
    [17] LEE Y W, WIERZBICKI T. Fracture prediction of thin plates under localized impulsive loading. Part I: dishing [J]. International Journal of Impact Engineering, 2005, 31(10): 1253–1276. DOI: 10.1016/j.ijimpeng.2004.07.010.
    [18] THOMSON W T. An approximate theory of armor penetration [J]. Journal of Applied Physics, 1955, 26(1): 80–82. DOI: 10.1063/1.1721868.
    [19] CORBETT G G, REID S R, JOHNSON W. Impact loading of plates and shells by free-flying projectiles: a review [J]. International Journal of Impact Engineering, 1996, 18(2): 141–230. DOI: 10.1016/0734-743X(95)00023-4.
    [20] JONES N. Structural impact [M]. 2nd ed. Cambridge: Cambridge University Press, 2011: 360−361. DOI: 10.1017/CBO9780511820625
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  5243
  • HTML全文浏览量:  1439
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-14
  • 修回日期:  2018-11-26
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回