Hopkinson拉杆平板挂钩试件结构智能协同优化

黄德东 王清华 邢亮亮 徐丰 吴斌

黄德东, 王清华, 邢亮亮, 徐丰, 吴斌. Hopkinson拉杆平板挂钩试件结构智能协同优化[J]. 爆炸与冲击, 2019, 39(10): 104103. doi: 10.11883/bzycj-2018-0371
引用本文: 黄德东, 王清华, 邢亮亮, 徐丰, 吴斌. Hopkinson拉杆平板挂钩试件结构智能协同优化[J]. 爆炸与冲击, 2019, 39(10): 104103. doi: 10.11883/bzycj-2018-0371
HUANG Dedong, WANG Qinghua, XING Liangliang, XU Feng, WU Bin. Intelligent collaborative optimization of structural parameters for hook-sheet specimens used in split Hopkinson tensile bar[J]. Explosion And Shock Waves, 2019, 39(10): 104103. doi: 10.11883/bzycj-2018-0371
Citation: HUANG Dedong, WANG Qinghua, XING Liangliang, XU Feng, WU Bin. Intelligent collaborative optimization of structural parameters for hook-sheet specimens used in split Hopkinson tensile bar[J]. Explosion And Shock Waves, 2019, 39(10): 104103. doi: 10.11883/bzycj-2018-0371

Hopkinson拉杆平板挂钩试件结构智能协同优化

doi: 10.11883/bzycj-2018-0371
基金项目: 国家自然科学基金(11702224);陕西省自然科学基金(2018JQ1062)
详细信息
    作者简介:

    黄德东(1982- ),男,博士,助理研究员,huangdedong@nwpu.edu.cn

    通讯作者:

    徐 丰(1985- ),男,博士,助理研究员,xufeng@nwpu.edu.cn

  • 中图分类号: O383; TB302.3

Intelligent collaborative optimization of structural parameters for hook-sheet specimens used in split Hopkinson tensile bar

  • 摘要: 与霍普金森拉杆装置中常用的螺纹、胶粘等固定连接方式相比,平板挂钩试件具有连接形式简单、可实现快速组装等优势。针对平板挂钩试件在拉伸过程中因结构几何效应引起的数据测量误差问题,基于影响拉伸试件测量精度的指标:应力平衡达到时间、变形均匀程度、过渡段相对变形以及非轴向力水平,采用正交试验设计、反向传播(back propagation,BP)神经网络与遗传算法相结合的多目标智能协同优化算法对平板挂钩试件的结构参数进行优化,得到了平板挂钩试件最优的结构参数组合,有限元模拟和实验验证了最优结构参数的有效性。该研究结果可为基于平板挂钩试件的霍普金森拉伸实验的数据可靠性分析提供参考。
  • 图  1  分离式霍普金森拉杆装置示意图

    Figure  1.  Schematic of a split Hopkinson tensile bar device

    图  2  与试件连接的杆端的结构及尺寸

    Figure  2.  Structure and dimensions of the tensile bar end connected to the specimen

    图  3  1 500 s−1应变率下AA5182真实应力-真实应变实验曲线

    Figure  3.  True stress-true strain curves of AA5182 at the strain rate of 1 500 s−1

    图  4  试件结构及尺寸

    Figure  4.  Structure and dimensions of the specimen

    图  5  试件及其连接区域的细化网格

    Figure  5.  Refined mesh of the specimen and its connected zone

    图  6  标距段范围内沿试件中心线选取的路径

    Figure  6.  The path taken along the centerline of the specimen in the central section

    图  7  试件的轴向应力偏差随时间变化

    Figure  7.  Relative deviation of axial stress in the specimen with time

    图  8  轴向应力与非轴向应力沿路径的分布

    Figure  8.  Axial stress and non-axial stress along the path

    图  9  非轴向应力/轴向应力比值沿路径的分布

    Figure  9.  Ratio of non-axial stress/axial stress along the path

    图  10  单波加载后试件中的轴向应变分布

    Figure  10.  Distribution of axial strain in specimen after single wave

    图  11  智能协同优化方案流程图

    Figure  11.  The flow chart of intelligent collaborative optimization

    图  12  最小目标值随遗传代数的变化

    Figure  12.  The change of minimum objective function in each generation

    图  13  优化后试件的结构

    Figure  13.  The structure and dimensions of the optimized specimen

    图  14  优化试件的1/4模型网格

    Figure  14.  The 1/4 meshed model of the optimized specimen

    图  15  优化试件轴向应变云图

    Figure  15.  Distribution of axial strain in the optimized specimen

    图  16  加载前的最优结构试件

    Figure  16.  The specimen with optimal structure before loading

    图  17  试件轴向应变分布云图

    Figure  17.  Distributed cloud map of axial strain of the specimen

    图  18  轴向应变分布数值模拟与实验结果的比较

    Figure  18.  Comparison of axial strain distribution between simulation and experiment

    图  19  试件轴向变形分布云图

    Figure  19.  Contour of axial deformation of the specimen

    表  1  试件各段变形量及过渡段相对变形

    Table  1.   The deformation of each section of the specimen and the relative deformation of the transition zone

    前过渡段变形量标距段变形量后过渡段变形量过渡段相对变形
    0.20 mm1.62 mm0.21 mm20.20%
    下载: 导出CSV

    表  2  结构参数正交试验设计表

    Table  2.   Orthogonal test table of structural parameters

    试验编号结构参数(单位:mm)应力平衡达到时间E/μs应变方差V/10−3过渡段相对
    变形D
    非轴向应力
    水平N
    L1W1L2W2RT
    01621230.50.618.000.470 50.051 70.038 1
    026313410.918.000.442 90.136 00.042 1
    036414521.218.610.566 70.249 90.049 7
    04661562.51.518.850.571 30.309 10.056 6
    056816731.820.800.525 60.351 40.081 5
    06721352.51.821.450.139 60.221 90.021 4
    077314630.621.000.195 40.283 10.023 8
    08741570.50.921.000.879 60.014 90.075 0
    097616311.221.500.950 60.114 00.082 9
    107812421.522.000.805 50.230 20.081 0
    118214711.522.500.228 90.074 00.032 9
    128315321.823.000.235 80.196 70.030 0
    13841642.50.622.790.281 70.244 50.032 9
    148612530.922.810.371 70.287 40.046 2
    15881360.51.222.811.593 20.074 60.125 3
    169215431.224.000.085 90.196 90.011 0
    17931650.51.523.500.774 20.034 60.048 7
    189412611.824.000.317 80.061 00.044 9
    199613720.623.410.472 10.194 60.050 4
    20981432.50.924.000.607 00.230 40.060 7
    2110216620.925.200.154 70.138 70.013 5
    221031272.51.225.200.192 60.191 70.019 4
    2310413331.525.000.211 60.224 40.022 7
    241061440.51.825.011.442 40.027 00.086 6
    2510815510.624.001.117 40.096 90.088 8
    下载: 导出CSV

    表  3  测试样本数据

    Table  3.   The data of test samples

    测试试验结构参数(单位:mm)应力平衡达到时间E/μs应变方差V/10−3过渡段相对
    变形D
    非轴向应力
    水平N
    L1W1L2W2RT
    016314611.518.770.285 40.119 20.047 7
    028212521.222.680.203 50.162 40.018 7
    031041672.50.925.120.276 90.205 30.029 0
    下载: 导出CSV

    表  4  各项指标及目标值网络预测与实际情况的比较

    Table  4.   The comparison of predicted and actual values of indicators and objective function

    指标/目标值123
    实际值预测值误差/%实际值预测值误差/%实际值预测值误差/%
    应力平达到衡时间 E/μs18.7717.89 4.722.6820.1511.225.1227.459.2
    应变方差 V/10−30.285 40.263 3 7.70.203 50.185 7 8.70.276 90.299 48.1
    过渡段相对变形 D0.119 20.104 012.80.162 40.163 8 0.90.205 30.210 72.6
    非轴向应力水平 N0.047 70.050 1 5.00.018 70.020 811.20.029 00.029 51.7
    目标函数值 Obj3.009 92.887 7 4.12.716 72.620 6 3.53.417 33.604 65.5
    下载: 导出CSV

    表  5  优化试件各段变形量及过渡段相对变形

    Table  5.   The deformation of each section of the optimized specimen and the relative deformation of the transition zone

    前过渡段变形量标距段变形量后过渡段变形量过渡段相对变形
    0.16 mm2.03 mm0.16 mm13.62%
    下载: 导出CSV

    表  6  优化前后各项指标的比较

    Table  6.   The comparison of various indicators before and after the optimization

    指标优化前优化后增大(↑)或降低(↓)
    应力平衡达到时间E/μs22.8124.758.51%↑
    应变方差V/10−30.598 80.135 177.44%↓
    过渡段相对变形 D0.202 00.136 232.57%↓
    非轴向应力水平 N0.056 30.018 866.61%↓
    下载: 导出CSV

    表  7  各段变形值实验与计算的比较

    Table  7.   Comparison of deformation of transition zones between simulations and experiments

    变形段计算值实验值相对偏差
    前过渡段0.16 mm0.13 mm18.75%
    后过渡段0.16 mm0.15 mm6.25%
    标距段2.03 mm2.12 mm4.43%
    相对变形13.62%11.67%14.32%
    下载: 导出CSV

    表  8  参考试件与优化试件数值模拟和实验结果的对比

    Table  8.   The comparison of simulated and experimental results between reference specimen and optimized specimen

    指标参考试件优化试件
    计算实验相对偏差计算实验相对偏差
    过渡段相对变形/%20.2022.3110.45%13.6211.6714.32%
    标距段变形均匀度/10−30.598 80.544 69.05%0.135 10.145 57.70%
    下载: 导出CSV
  • [1] KOLSKY H. An investigation of the mechanical properties of material at very high rates of loading [J]. Proceedings of the Physical Society: Section B, 1949, 62(1): 676–700.
    [2] HARDING J, WOOD E O, CAMPBELL J D. Tensile testing of materials at impact rates of strain [J]. Journal of Mechanical Engineering Science, 1960, 2(2): 88–96. DOI: 10.1243/JMES_JOUR_1960_002_016_02.
    [3] OGAWA K. Impact-tension compression test by using a split Hopkinson bar [J]. Experimental Mechanics, 1984, 24(2): 81–86. DOI: 10.1007/BF02324987.
    [4] 申海艇, 蒋招绣, 王贝壳, 等. 基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用 [J]. 爆炸与冲击, 2017, 37(1): 15–20. DOI: 10.11883/1001-1455(2017)01-0015-06.

    SHEN Haiting, JIANG Zhaoxiu, WANG Beike, et al. Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation [J]. Explosion and Shock Waves, 2017, 37(1): 15–20. DOI: 10.11883/1001-1455(2017)01-0015-06.
    [5] GILAT A, GOLDBERG R K, ROBERTS G D. Experimental study of strain-rate-dependent behavior of carbon/epoxy composite [J]. Composites Science and Technology, 2002, 62(10/11): 1469–1479. DOI: 10.1016/S0266-3538(02)00100-8.
    [6] CHEN X, LI Y, ZHI Z, et al. The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates [J]. Carbon, 2013, 61: 97–104. DOI: 10.1016/j.carbon.2013.04.073.
    [7] OWENS A T, TIPPUR H V. A tensile split Hopkinson bar for testing particulate polymer composites under elevated rates of loading [J]. Experimental Mechanics, 2008, 49(6): 799–811. DOI: 10.1007/s11340-008-9192-7.
    [8] 朱耀, 庞宝君, 盖秉政. 一种用于动态拉伸试验装置的新型试件装卡方式 [J]. 实验力学, 2009, 24(5): 433–438. DOI: 1001-4888(2009)05-0433-06.

    ZHU Yao, PANG Baojun, GAI Bingzheng. A new specimen fastener for dynamic tensile testing apparatus [J]. Journal of Experimental Mechanics, 2009, 24(5): 433–438. DOI: 1001-4888(2009)05-0433-06.
    [9] TAN X, GUO W, GAO X, et al. A new technique for conducting split Hopkinson tensile bar test at elevated temperatures [J]. Experimental Techniques, 2017, 41(2): 191–201. DOI: 10.1007/s40799-017-0167-4.
    [10] VERLEYSEN P, DEGRIECK J. Non-homogeneous and multi-axial stress distribution in concrete specimens during split Hopkinson tensile tests [J]. Computers and Structures, 2000, 77(6): 669–676. DOI: 10.1016/S0045-7949(00)00022-5.
    [11] CHEN W, LU F, CHENG M. Tension and compression tests of two polymers under quasi-static and dynamic loading [J]. Polymer Testing, 2002, 21(2): 113–121. DOI: 10.1016/S0142-9418(01)00055-1.
    [12] PRABOWO Q A, KARIEM M A, GUNAWAN L. The effect of specimen dimension on the results of the split Hopkinson tension bar testing [J]. Procedia Engineering, 2017, 173: 608–614. DOI: 10.1016/j.proeng.2016.12.114.
    [13] VERLEYSEN P, DEGRIECK J, VERSTRAETE T, et al. Influence of specimen geometry on split Hopkinson tensile bar test on sheet materials [J]. Experimental Mechanics, 2008, 48(5): 587–598. DOI: 10.1007/s11340-008-9149-x.
    [14] NGUYEN K H, KIM H C, SHIN H, et al. Numerical investigation into the stress wave transmitting characteristics of threads in the split Hopkinson tensile bar test [J]. International Journal of Impact Engineering, 2017, 109: 253–263. DOI: 10.1016/j.ijimpeng.2017.07.004.
    [15] 王礼立. 应力波基础[M]. 第2版. 北京: 国防工业出版社, 2005: 52−60.
    [16] SMERD R, WINKLER S, SALISBURY C, et al. High strain rate tensile testing of automotive aluminum alloy sheet [J]. International Journal of Impact Engineering, 2005, 32(1): 541–560. DOI: 10.1016/j.ijimpeng.2005.04.013.
    [17] SONG B, CHEN W. Dynamic stress equilibrium in split Hopkinson pressure bar tests on soft materials [J]. Experimental Mechanics, 2004, 44: 300–312. DOI: 10.1007/BF02427897.
    [18] 施建俊, 李庆亚, 张琪, 等. 基于Matlab和BP神经网络的爆破振动预测系统 [J]. 爆炸与冲击, 2017, 37(6): 1087–1092. DOI: 10.11883/1001-1455(2017)06-1087-06.

    SHI Jianjun, LI Qingya, ZHANG Qi. Forecast system for blasting vibration velocity peak based on Matlab and BP neural network [J]. Explosion and Shock Waves, 2017, 37(6): 1087–1092. DOI: 10.11883/1001-1455(2017)06-1087-06.
    [19] WEN J, LIU C H, YAO H, et al. A nonlinear dynamic model and parameters identification method for predicting the shock pulse of rubber waveform generator [J]. International Journal of Impact Engineering, 2018, 120: 1–15. DOI: 10.1016/j.ijimpeng.2018.05.009.
    [20] 李守巨, 刘迎曦, 刘玉静, 等. 基于遗传算法的爆炸冲击荷载参数识别方法 [J]. 爆炸与冲击, 2002, 22(4): 295–300.

    LI Shouju, LIU Yingxi, LIU Yujing, et al. Parameter identification procedures of explosion shock loading based on genetic algorithm [J]. Explosion and Shock Waves, 2002, 22(4): 295–300.
  • 加载中
图(19) / 表(8)
计量
  • 文章访问数:  5835
  • HTML全文浏览量:  1490
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-26
  • 修回日期:  2019-04-01
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回