A resistance model for a rigid flat projectile penetrating a reinforced concrete target
-
摘要: 本文基于素混凝土侵彻理论,将钢筋混凝土中钢筋的失效模式简化为弯曲剪切失效后,建立了刚性平头弹侵彻钢筋混凝土靶的阻力模型,侵彻深度的计算结果与Young公式吻合良好,表明本文提出的理论模型可较为合理地预测侵彻深度。进一步分析了不同着靶点的位置对弹体侵彻的影响,结果表明:当弹体直径与钢筋网眼尺寸的比值小于1时,弹体撞击到网眼中心处侵彻深度最大;当弹体直径与网眼尺寸的比值大于1时,最不利着靶点位置视其比值而定。最后,基于防护角度的最不利工况,建立了侵彻深度的工程计算公式。Abstract: In this study, the resistance model of rigid flat-nosed projectile penetrating reinforced concrete target was established, in which the failure mode of reinforcing bar in reinforced concrete was simplified as bending shear failure on the foundation of plain concrete penetration theory. The calculation results of penetration depth agreed well with Young's formula. The results indicated that the model established in this study could reasonably predict the penetration depth. The results show that the penetration depth of the projectile impacting the mesh center is maximum when the ratio of the projectile diameter to the mesh size is less than 1, and the most unfavorable target position depends on the ratio when it exceeds 1. In view of protection, an engineering calculation formula of penetration depth was proposed under the most unfavorable working condition of.
-
Key words:
- penetration /
- reinforced concrete /
- bending shear failure /
- resistance model
-
表 1 计算侵彻深度
Table 1. Calculating penetration depth
工况 弹体参数 弹体与钢筋的相对位置 侵彻深度/mm 误差/% 直径/mm 长度/mm 质量/kg 撞击速度/(m·s−1) 1 80 532 13 600 钢筋交汇处 649 0.6 钢筋网格一边中点 649 0.6 钢筋网眼中心 649 0.6 Young公式 653 − 2 90 599 18 600 钢筋交汇处 712 2.47 钢筋网格一边中点 711 2.6 钢筋网眼中心 711 2.6 Young公式 730 − 3 100 666 25 600 钢筋交汇处 801 3.84 钢筋网格一边中点 800 3.96 钢筋网眼中心 800 3.96 Young公式 833 − 4 100 666 25 410 钢筋交汇处 513 7.57 钢筋网格一边中点 513 7.57 钢筋网眼中心 512 7.75 Young公式 555 − 5 100 666 25 780 钢筋交汇处 1 046 4.56 钢筋网格一边中点 1 045 4.65 钢筋网眼中心 1 045 4.65 Young公式 1 096 − -
[1] YOUNG C W. Depth prediction for earth-penetrating projectiles [J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95: 803–818. [2] YOUNG C W. Penetration equations [J]. Office of Scientific and Technical Information Technical Reports, 1997, 33(1−12): 837–846. [3] LUK V K, FORRESTAL M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles [J]. International Journal of Impact Engineering, 1987, 6(4): 291–301. DOI: 10.1016/0734-743X(87)90096-0. [4] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4. [5] 黄民荣, 顾晓辉, 高永宏. 刚性弹丸侵彻钢筋混凝土的实验和简化分析模型 [J]. 实验力学, 2009, 24(4): 283–290.HUANG M R, GU X H, GAO Y H. Experiment and simplified analytical model for penetration of rigid projectile in a reinforced concrete target [J]. Journal of Experimental Mechanics, 2009, 24(4): 283–290. [6] 欧阳春, 赵国志, 李文彬, 等. 弹丸垂直侵彻钢筋混凝土介质的工程模型 [J]. 弹箭与制导学报, 2004, 24(S7): 140–142.OUYANG C, ZHAO G Z, LI W B, et al. An engineering model for penetration normally into semi-infinite reinforced concrete targets [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004, 24(S7): 140–142. [7] 周宁, 任辉启, 沈兆武, 等. 弹丸侵彻钢筋混凝土的工程解析模型 [J]. 爆炸与冲击, 2007, 27(6): 529–534. DOI: 10.11883/1001-1455(2007)06-0529-06.ZHOU N, REN H Q, SHEN Z W, et al. An engineering analytical model for projectiles to penetrate into semi-infinite reinforced concrete targets [J]. Explosion and Shock Waves, 2007, 27(6): 529–534. DOI: 10.11883/1001-1455(2007)06-0529-06. [8] 穆朝民, 任辉启. 弹丸对混凝土中钢筋结构侵彻效应研究 [J]. 兵器材料科学与工程, 2011, 34(6): 1–5.MU C M, REN H Q. Penetration effect of projectile into reinforced concrete targets [J]. Ordnance Material Science and Engineering, 2011, 34(6): 1–5. [9] 刘志林, 孙巍巍, 王晓鸣, 等. 卵形弹丸垂直侵彻钢筋混凝土靶的工程解析模型 [J]. 弹道学报, 2015(3): 84–90. DOI: 10.3969/j.issn.1004-499X.2015.03.016.LIU Z L, SUN W W, WANG X M, et al. Engineering analytical model of ogive-nose steel projectiles vertically penetrating reinforced concrete target [J]. Journal of Ballistics, 2015(3): 84–90. DOI: 10.3969/j.issn.1004-499X.2015.03.016. [10] 杨华伟.尖卵形长杆弹侵彻半无限混凝土靶的动力学行为研究[D].太原: 太原理工大学, 2018: 1−2. [11] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4. [12] 欧阳春, 赵国志, 杜中华, 等. 弹丸垂直侵彻钢筋混凝土介质的工程解析模型 [J]. 爆炸与冲击, 2004, 24(3): 273–277.OUYANG C, ZHAO G Z, DU Z H, et al. An engineering analyticaI modeI for projectiles to penetrate normally into semi-infinite reinforced concrete targets [J]. Explosion and Shock Waves, 2004, 24(3): 273–277. [13] YU T X, CHEN F L. A further study of plastic shear failure of impulsively loaded clamped beams [J]. International Journal of Impact Engineering, 2000, 24(6): 613–629.