Interface characteristics of explosive welding for different strength plates
-
摘要: 为了研究爆炸焊接结合界面机理及材料强度对爆炸焊接的影响,采用相同的爆炸焊接参数对不同强度的基板进行了爆炸焊接。通过光学显微镜、扫描电子显微镜以及数值模拟技术对焊接试样的形貌、缺陷以及焊接机理进行了分析。结果表明:当材料强度较低时,碰撞点动压与基板材料强度的比值较高,界面出现较大的塑性应变并生热,此时界面熔化区较大,在焊接过程中可以将界面等效为不可压缩流体;当材料强度较高而碰撞点动压与基板强度的比值较低时,试样界面形貌受材料强度的影响较大。随着材料强度的上升,周期性的波状界面逐渐趋于平直。界面熔化现象减弱但温升速率较高,并受碰撞点附近高压出现热失稳现象形成剪切带及裂缝。此时材料强度的影响不可忽略,界面不能等效为不可压缩流体。Abstract: This work studies the effect of base plate initial tensile strength on interface morphology and welding quality in explosive welding. The plates with different initial tensile strength were fabricated via explosive welding method under the same parameters. The microstructure of the interface for the explosive welding sample was analyzed, and the results showed that the interface of the explosive welding sample was greatly influenced by the strength of the material, the interface was formed of over-melted, periodic ripples and finally flattening with the increasing strength of the material. Combined with the numerical simulation results, it is found that the interface melting zone is large and can be considered as an incompressible fluid for analysis when the specific pressure of explosive welding is high. When the specific pressure is low, the local temperature rising speed of the welded sample will be higher and the adiabatic shear zone will be formed under the action of plastic strain, although the interface will still melt. The strength of the material cannot be neglected for the explosive welding.
-
Key words:
- explosive welding /
- material strength /
- interface morphology
-
表 1 基板参数
Table 1. Parameters of base plates
基板 σb/MPa HV 1 357 105 2 895 268 3 1 529 449 4 2 588 760 表 2 各焊接试样界面波参数
Table 2. Interface wave parameters ofdifferent welding specimens
基板 幅值/μm 波长/μm 2 180.2 396.8 3 148.8 567.5 4 70.0 402.5 -
[1] VIGUERAS D. Explosive and impact welding: technical review [J]. Materials Technology, 2007, 22(4): 200–204. DOI: 10.1179/175355507X236740. [2] BAHRANI A S, BLACK T J, CROSSLAND B. The mechanics of wave formation in explosive welding [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1967, 296(1445): 123–136. DOI: 10.1098/rspa.1967.0010. [3] REID S R. Wake instability mechanism for wave formation in explosive welding [J]. International Journal of Mechanical Sciences, 1978, 20(4): 247–253. DOI: 10.1016/0020-7403(78)90086-3. [4] 张登霞, 李国豪, 周之洪, 等. 材料强度在爆炸焊接界面波形成过程中的作用 [J]. 力学学报, 1984, 16(1): 73–80.ZHANG Dengxia, LI Guohao, ZHOU Zhihong, et al. Effect of material strength on forming process of explosive welding interface wave [J]. Acta Mechanica Sinica, 1984, 16(1): 73–80. [5] 李雪娇, 马宏昊, 沈兆武. 铝合金与槽型界面钢板的爆炸焊接 [J]. 爆炸与冲击, 2016, 36(5): 640–647. DOI: 10.11883/1001-1455(2016)05-0640-08.LI Xuejiao, MA Honghao, SHEN Zhaowu. Explosive welding of interface between aluminum alloy and steel plate with dovetail grooves [J]. Explosive and Shock Waves, 2016, 36(5): 640–647. DOI: 10.11883/1001-1455(2016)05-0640-08. [6] NING J, ZHANG L J, XIE M X, et al. Microstructure and property inhomogeneity investigations of bonded Zr/Ti/steel trimetallic sheet fabricated by explosive welding [J]. Journal of Alloys and Compounds, 2017, 698: 835–851. DOI: 10.1016/j.jallcom.2016.12.213. [7] LI K B, LI X J, YAN H H, et al. Study of continuous velocity probe method for the determination of the detonation pressure of commercial explosives [J]. Journal of Energetic Materials, 2018, 36(4): 1–9. DOI: 10.1080/07370652.2018.1425310. [8] 王宇新, 李晓杰, 王小红, 等. 爆炸焊接界面波物质点法三维数值模拟 [J]. 爆炸与冲击, 2014, 34(6): 716–722. DOI: 10.11883/1001-1455(2014)06-0716-07.WANG Yuxin, LI Xiaojie, WANG Xiaohong, et al. Numerical simulation on interfacial wave formation in explosive welding using material point methed [J]. Explosive and Shock Waves, 2014, 34(6): 716–722. DOI: 10.11883/1001-1455(2014)06-0716-07. [9] 李 晓 杰 , 闫 鸿 浩 , 王 金 相 , 等 . 爆 炸 焊 接 驻 点 近 区 应 变 率 分 布 规 律 计 算 [ J ] . 爆 炸 与 冲 击 , 2 0 0 2 , 2 2 ( 4 ) : 3 1 5 – 3 2 0 . D O I : . L I X i a o j i e , Y A N H o n g h a o , W A N G J i n x i a n g , e t a l . C a l c u l a t i o n o f t h e d i s t r i b u t i o n r u l e o f s t r a i n r a t e n e a r t h e s t a g n a t i o n p o i n t d u r i n g e x p l o s i v e w e l d i n g [ J ] . E x p l o s i v e a n d S h o c k W a v e s , 2 0 0 2 , 2 2 ( 4 ) : 3 1 5 – 3 2 0 . D O I : . [10] 李晓杰, 莫非, 闫鸿浩, 等. 爆炸焊接界面波的数值模拟 [J]. 爆炸与冲击, 2011, 31(6): 653–657. DOI: 10.11883/1001-1455(2011)06-0653-05.LI Xiaojie, MO Fei, YAN Honghao, et al. Numerical simulation of interface waves in steel explosive welding [J]. Explosive and Shock Waves, 2011, 31(6): 653–657. DOI: 10.11883/1001-1455(2011)06-0653-05. [11] MOHAMMED G, ISHAK M, AQIDA S, et al. Effects of heat input on microstructure, corrosion and mechanical characteristics of welded austenitic and duplex stainless steels: A review [J]. Metals, 2017, 7(2): 39. DOI: 10.3390/met7020039.