• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

弹体侵彻混凝土靶体的尺寸效应分析

彭永 卢芳云 方秦 吴昊 李翔宇

张世文, 李英雷, 陈艳, 但加坤, 郭昭亮, 刘明涛. 爆炸加载下金属柱壳破片软回收技术研究[J]. 爆炸与冲击, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449
引用本文: 彭永, 卢芳云, 方秦, 吴昊, 李翔宇. 弹体侵彻混凝土靶体的尺寸效应分析[J]. 爆炸与冲击, 2019, 39(11): 113301. doi: 10.11883/bzycj-2018-0402
ZHANG Shiwen, LI Yinglei, CHEN yan, DAN Jiakun, GUO Zhaoliang, LIU Mingtao. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading[J]. Explosion And Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449
Citation: PENG Yong, LU Fangyun, FANG Qin, WU Hao, LI Xiangyu. Analyses of the size effect for projectile penetrations into concrete targets[J]. Explosion And Shock Waves, 2019, 39(11): 113301. doi: 10.11883/bzycj-2018-0402

弹体侵彻混凝土靶体的尺寸效应分析

doi: 10.11883/bzycj-2018-0402
基金项目: 国家自然科学基金(11902355)
详细信息
    作者简介:

    彭 永(1989- ),男,博士,讲师,pengy116@163.com

  • 中图分类号: O385; TU528

Analyses of the size effect for projectile penetrations into concrete targets

  • 摘要: 由于混凝土靶体抗刚性弹侵彻实验大多基于缩比弹体展开,侵彻深度相似律是否成立显得尤为重要。在侵彻相似模型基础上,综合分析已有侵彻实验数据及经验公式,发现侵彻深度在通常情况下存在尺寸效应,且无量纲侵彻深度随弹体尺寸变大而增大。但如果模型以及原型实验中弹体与混凝土靶体(包括粗骨料)严格等比例设计,侵彻深度相似律是成立的。不变的骨料特征(粗骨料未随弹体尺寸缩放)是引起侵彻实验以及侵彻经验公式中尺寸效应的主要原因。为研究由粗骨料引起的侵彻尺寸效应,开发了混凝土二维细观有限元建模程序,细观数值实验成功地反映出了侵彻尺寸效应,考虑模拟尺寸效应后的侵彻公式能较好地预测不同尺寸侵彻实验。
  • 图  1  侵彻相似律成立前提下几何相似弹体的无量纲侵彻深度

    Figure  1.  Dimensionless penetration depth of geometrically similar projectiles, given the scaling law as true

    图  2  几何相似弹体的无量纲侵彻深度(P/d)与侵彻初速度的关系[8]

    Figure  2.  Dimensionless penetration depth of geometrically similar projectiles vs. initial penetrating velocities [8]

    图  3  Forrestal半理论侵彻深度公式计算结果

    Figure  3.  Calculated results based on the semi-analytical formula for penetration depth proposed by Forrestal et al

    图  4  经验公式中几何相似弹体的无量纲侵彻深度

    Figure  4.  Dimensionless penetration depth of the geometrically similar projectiles predicted by the empirical formulae

    图  5  模型以及原型侵彻实验的无量纲侵彻深度[25]

    Figure  5.  Normalized penetration depth for the two sets of scaled penetration experiments [25]

    图  6  二维粗骨料几何随机模型的生成

    Figure  6.  Procedures for 2D geometric model of an aggregate of random size and shape

    图  7  混凝土二维细观有限元模型

    Figure  7.  2D mesoscopic finite element model for concrete specimen

    图  8  侵彻作用下非均质混凝土靶体内的von Mises应力分布

    Figure  8.  Von Mises stress distributions in the inhomogeneous regarded concrete target under projectile penetrations

    图  9  侵彻作用下均质混凝土靶体内的von Mises应力分布

    Figure  9.  Von Mises stress distributions in the homogeneous regarded concrete target under projectile penetrations

    图  10  几何相似弹体侵彻相同材质靶体时的无量纲相对侵彻深度

    Figure  10.  Relative dimensionless penetration depth of replica-scaled projectiles into targets of identical materials

    图  11  考虑尺寸效应后半理论公式计算结果与不同尺寸侵彻实验数据的对比

    Figure  11.  Comparison between predictions of semi-analytical formula with size effect added and test data of different sizes

    表  1  相似模型中原型相对于模型的各物理量

    Table  1.   Parameters in the prototype model relative to the reduced model

    变量比例变量比例
    弹径λ侵彻深度λ
    弹长λ加速度λ−1
    弹体密度1侵彻持续时间λ
    弹体质量λ3弹体轴向阻力λ2
    侵彻初速度1阻应力1
    下载: 导出CSV

    表  2  确定S值的侵彻实验相关信息[7-8, 19]

    Table  2.   Experimental parameters for tests for determining S [7-8, 19]

    fc/MPa13.521.636.25158.462.896.7
    a1)/mm4.84.89.52)9.59.59.59.52)
    d/mm12.912.926.930.520.3/30.520.326.9
    d/a2.692.692.833.212.14/3.212.142.83
    M/kg0.0640.0640.9061.60.478/1.620.4780.904
     注:1) a 为混凝土靶体中粗骨料的最大粒径,2) 表示粒径没有明确给出。
    下载: 导出CSV

    表  3  砂浆及粗骨料的HJC材料模型参数

    Table  3.   Parameters of the HJC material model for cement and aggregate

    参数砂浆骨料参数砂浆骨料
    单轴抗压强度 fc/MPa12120弹性极限静水压力Pcrush/MPa4.040
    密度 ρ/(kg·m−32 0002 660弹性极限体积应变Ucrush5.4×10−41.1×10−3
    剪切模量 G/GPa5.5526.93转折静水压力Plock/GPa11
    极限面参数A0.790.79压实体积应变Ulock0.10.1
    极限面参数B1.61.6压力系数K1/GPa1717
    压力硬化系数 N0.610.61压力系数K2/GPa3838
    抗拉强度 T/MPa1.112压力系数K3/GPa29.829.8
    下载: 导出CSV
  • [1] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets [J]. International Journal of Solids and Structures, 1997, 34(31/32): 4127–4146. DOI: 10.1016/S0020-7683(97)00017-6.
    [2] 吴昊, 方秦, 龚自明. 考虑刚性弹弹头形状的混凝土(岩石)靶体侵彻深度半理论分析 [J]. 爆炸与冲击, 2012, 32(6): 573–580. DOI: 10.11883/1001-1455(2012)06-0573-08.

    WU Hao, FANG Qin, GONG Ziming. Semi-theoretical analyses for penetration depth of rigid projectiles with different nose geometries into concrete (rock) targets [J]. Explosion and Shock Waves, 2012, 32(6): 573–580. DOI: 10.11883/1001-1455(2012)06-0573-08.
    [3] FENG J, LI W B, WANG X M, et al. Dynamic spherical cavity expansion analysis of rate-dependent concrete material with scale effect [J]. International Journal of Impact Engineering, 2015, 84: 24–37. DOI: 10.1016/j.ijimpeng.2015.05.005.
    [4] KONG X Z, WU H, FANG Q, et al. Rigid and eroding projectile penetration into concrete targets based on an extended dynamic cavity expansion model [J]. International Journal of Impact Engineering, 2017, 100: 13–22. DOI: 10.1016/j.ijimpeng.2016.10.005.
    [5] KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
    [6] LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets [J]. International Journal of Impact Engineering, 2005, 32(1): 224–284.
    [7] FORRESTAL M J, ALTMAN B S, CARGILE J D. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [8] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
    [9] 周宁, 任辉启, 沈兆武, 等. 弹丸侵彻混凝土和钢筋混凝土的试验 [J]. 中国科学技术大学学报, 2016, 36(10): 1021–1027.

    ZHOU Ning, REN Huiqi, SHEN Zhaowu, et al. Experimental on the projectile penetration concrete targets and reinforced concrete targets [J]. Journal of University of Science and Technology of China, 2016, 36(10): 1021–1027.
    [10] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
    [11] PENG Y, WU H, FANG Q, et al. A note on the deep penetration and perforation of hard projectiles into thick targets [J]. International Journal of Impact Engineering, 2015, 85: 37–44. DOI: 10.1016/j.ijimpeng.2015.06.013.
    [12] 徐建波. 长杆射弹对混凝土的侵彻特性研究[D]. 长沙: 国防科学技术大学, 2001: 79−84.
    [13] 许三罗, 相恒波. 射弹侵彻混凝土中相似理论的应用及误差分析 [J]. 弹箭与制导学报, 2007, 27(3): 123–126. DOI: 10.3969/j.issn.1673-9728.2007.03.037.

    XU Sanluo, XIANG Hengbo. Similarity theory applied in projectile penetrating into concrete target and deflection analysis [J]. Journal of Projectile, Rocket, Missiles and Guidance, 2007, 27(3): 123–126. DOI: 10.3969/j.issn.1673-9728.2007.03.037.
    [14] 卢江仁, 孟会林, 孙新利. 动能弹垂直侵彻混凝土相似律的数值模拟研究 [J]. 弹箭与制导学报, 2007, 27(4): 145–147. DOI: 10.3969/j.issn.1673-9728.2007.04.043.

    LU Jiangren, MENG Huilin, SUN Xinli. Numerical simulation of the analogue rules of the kinetic energy projectile vertically penetrating concrete target [J]. Journal of Projectile, Rocket, Missiles and Guidance, 2007, 27(4): 145–147. DOI: 10.3969/j.issn.1673-9728.2007.04.043.
    [15] 高光发, 李永池, 罗春涛, 等. 混凝土靶高速侵彻的率相关相似律研究 [J]. 弹箭与制导学报, 2011, 31(3): 98–100. DOI: 10.3969/j.issn.1673-9728.2011.03.028.

    GAO Guangfa, LI Yongchi, LUO Chuntao, et al. The study on rate-dependent similarity law of high velocity penetration into concrete target [J]. Journal of Projectile, Rocket, Missiles and Guidance, 2011, 31(3): 98–100. DOI: 10.3969/j.issn.1673-9728.2011.03.028.
    [16] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
    [17] GOMEZ J T, SHUKLA A. Multiple impact penetration of semi-infinite concrete [J]. International Journal of Impact Engineering, 2001, 25(10): 965–979. DOI: 10.1016/S0734-743X(01)00029-X.
    [18] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slab with 48MPa (7ksi) and 140MPa (20ksi) unconfined compressive strength [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
    [19] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [20] ACE Fundamentals of protective structures[R]. Army Corps of Engineers, Office of the Chief of Engineers, 1946.
    [21] Effects of impact and explosion[R]. Washington D C: National Defense Research Committee, 1946.
    [22] TELAND J A, SJØL H. An examination and reinterpretion of experimental data behind various empirical equations for penetration into concrete[C] //Proceedings of the 9th International Symposium Interaction of the Effects of Munitions with Structures, 1999.
    [23] BLUDAU C, KEUSER M, KUSTERMANN A. Perforation resistance of high-strength concrete panels [J]. ACI Structural Journal, 2006, 103(2): 188–195.
    [24] ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
    [25] CANFIELD J A, CLATOR I G. Development of a scaling law and techniques to investigate penetration in concrete: 2057 [R] Dahlgren: Naval Weapons Laboratory, 1966.
    [26] MANUAL L S D K U, Volume I. Version 971 [M]. Livermore Software Technology Corporation, 2007: 500−600.
    [27] HOLMQUIST T J, JOHNSON G R, Cook W H. A computational constitutive model for concrete subjective to large strain, high strain rates, and high pressure[C] // Proceedings of the 14th International Symposium on Ballistic. Canada, Quebec City, 1993: 591−600.
    [28] 彭永. 单(多)层混凝土靶板抗弹体侵彻/贯穿研究[D]. 南京: 解放军理工大学, 2014: 84−87.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  6537
  • HTML全文浏览量:  1712
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-18
  • 修回日期:  2019-01-30
  • 网络出版日期:  2019-10-25
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回