球体入水空泡演变和运动特性影响试验研究

王恒 孙铁志 路中磊 张桂勇 宗智

王恒, 孙铁志, 路中磊, 张桂勇, 宗智. 球体入水空泡演变和运动特性影响试验研究[J]. 爆炸与冲击, 2019, 39(12): 123901. doi: 10.11883/bzycj-2018-0415
引用本文: 王恒, 孙铁志, 路中磊, 张桂勇, 宗智. 球体入水空泡演变和运动特性影响试验研究[J]. 爆炸与冲击, 2019, 39(12): 123901. doi: 10.11883/bzycj-2018-0415
WANG Heng, SUN Tiezhi, LU Zhonglei, ZHANG Guiyong, ZONG Zhi. Experimental study on the cavity evolution and motion characteristics of spheres into water[J]. Explosion And Shock Waves, 2019, 39(12): 123901. doi: 10.11883/bzycj-2018-0415
Citation: WANG Heng, SUN Tiezhi, LU Zhonglei, ZHANG Guiyong, ZONG Zhi. Experimental study on the cavity evolution and motion characteristics of spheres into water[J]. Explosion And Shock Waves, 2019, 39(12): 123901. doi: 10.11883/bzycj-2018-0415

球体入水空泡演变和运动特性影响试验研究

doi: 10.11883/bzycj-2018-0415
基金项目: 国家自然科学基金(51709042,51579042);中国博士后科学基金(2018M631791);青年千人项目(D1007001);中央高校基本科研业务费专项资金(DUT18RC(4)018,DUT2017TB05);辽宁省自然科学基金(20180550619)
详细信息
    作者简介:

    王 恒(1996- ),男,硕士研究生,wangheng96@mail.dlut.edu.cn

    通讯作者:

    孙铁志(1986- ),男,博士,讲师,suntiezhi@dlut.edu.cn

  • 中图分类号: O352

Experimental study on the cavity evolution and motion characteristics of spheres into water

  • 摘要: 为了探究表面粗糙度对球体入水空泡演变及运动特性的影响,基于实验室开放水槽试验系统,选取了5种表面粗糙度的球体,使用高速摄像机记录入水过程,并得到了各个球体的入水空泡、喷溅的演变过程以及运动特性的变化。发现入水空泡和喷溅的闭合都会给球体一个负方向的加速度。通过对比不同表面粗糙度球体的位移、速度、加速度曲线,发现表面粗糙度最大的球体在砰击阶段结束后,其速度会明显小于其他球体,并且表面粗糙度对球体运动的影响主要体现在入水早期。分析了上述各球体的入水空泡闭合后,与自由面相连的空泡的收缩运动,发现其收缩速度和加速度曲线均会出现极大值点,呈现出球体表面粗糙度越大出现得越早的趋势。
  • 图  1  试验装置示意图

    Figure  1.  Schematic diagram of experimental setup

    图  2  球体入水过程空泡形态演变

    Figure  2.  Cavity evolution during the water-entry process of the sphere

    图  3  球体下落的速度和加速度变化

    Figure  3.  Drop velocity and acceleration of the sphere varying with time

    图  4  不同表面粗糙度球体的入水过程空泡形态对比

    Figure  4.  Comparisons of the cavity shapes in the water-entry process among the spheres with different surface roughnesses

    图  5  带有纳米涂层的球体入水产生的空泡[6]

    Figure  5.  The cavity produced by a sphere with a nanometric coating after water-entry[6]

    图  6  不同表面粗糙度球体入水过程的运动特性

    Figure  6.  Kinetic characteristics of the spheres with different surface roughnesses during the water-entry processes

    图  7  空泡收缩过程运动特征量定义

    Figure  7.  Definition of the motion parameters during the shrinking process of the cavity

    图  8  空泡收缩的运动特征量

    Figure  8.  Motion parameters during the shrinking processes of the cavities

  • [1] MARSTON J O, TRUSCOTT T T, SPEIRS N B, et al. Crown sealing and buckling instability during water entry of spheres [J]. Journal of Fluid Mechanics, 2016, 794: 506–529. DOI: 10.1017/jfm.2016.165.
    [2] 王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.3321/j.issn:1001-1455.2008.03.014.

    WANG Yonghu, SHI Xiuhua. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.3321/j.issn:1001-1455.2008.03.014.
    [3] WORTHINGTON A M. A study of splashes [M]. New York: Longmans, Green, and Company, 1908.
    [4] MAY A. Effect of surface condition of a sphere on its water-entry cavity [J]. Journal of Applied Physics, 1951, 22(10): 1219–1222. DOI: 10.1063/1.1699831.
    [5] DUCLAUX V, CAILLÉ F, DUEZ C, et al. Dynamics of transient cavities [J]. Journal of Fluid Mechanics, 2007, 591: 1–19. DOI: 10.1017/S0022112007007343.
    [6] DUEZ C, YBERT C, CLANET C, et al. Making a splash with water repellency [J]. Nature Physics, 2007, 3(3): 180–183. DOI: 10.1038/nphys545.
    [7] TRUSCOTT T T, TECHET A H. Water entry of spinning spheres [J]. Journal of Fluid Mechanics, 2009, 625: 135–165. DOI: 10.1017/S0022112008005533.
    [8] TECHET A H, TRUSCOTT T T. Water entry of spinning hydrophobic and hydrophilic spheres [J]. Journal of Fluids and Structures, 2011, 27(5): 716–726.
    [9] ARISTOFF J M, BUSH J W M. Water entry of small hydrophobic spheres [J]. Journal of Fluid Mechanics, 2009, 619: 45–78. DOI: 10.1017/S0022112008004382.
    [10] 马庆鹏, 何春涛, 王聪, 等. 球体垂直入水空泡实验研究 [J]. 爆炸与冲击, 2014, 34(2): 174–180. DOI: 10.11883/1001-1455(2014)02-0174-07.

    MA Qingpeng, HE Chuntao, WANG Cong, et al. Experimental investigation on vertical water-entry cavity of sphere [J]. Explosion and Shock Waves, 2014, 34(2): 174–180. DOI: 10.11883/1001-1455(2014)02-0174-07.
    [11] 孙钊, 曹伟, 王聪, 等. 表面润湿性对球体入水空泡形态的影响研究 [J]. 兵工学报, 2016, 37(4): 670–676. DOI: 10.3969/j.issn.1000-1093.2016.04.014.

    SUN Zhao, CAO Wei, WANG Cong, et al. Effect of surface wettability on cavitation of sphere during its water entry [J]. Acta Armamentarii, 2016, 37(4): 670–676. DOI: 10.3969/j.issn.1000-1093.2016.04.014.
    [12] 黄超, 翁翕, 刘谋斌. 超疏水小球低速入水空泡研究 [J]. 力学学报, 2019, 51(1): 36–45. DOI: 10.6052/0459-1879-18-310.

    Huang Chao, Weng Xi, Liu Moubin. Study on low-speed water entry of super-hydrophobic small spheres [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 36–45. DOI: 10.6052/0459-1879-18-310.
    [13] LEE J. Treatise on process metallurgy [M]. Elsevier Science, 2014.
    [14] YOUNG T. An essay on the cohesion of fluids [J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65–87. DOI: 10.1098/rstl.1805.0005.
    [15] CASSIE A B D, BAXTER S. Wettability of porous surfaces [J]. Transactions of Faraday Society, 1944, 40(1): 546–551.
    [16] WENZEL R N. Resistance of solid surfaces to wetting by water [J]. Industrial and Engineering Chemistry, 1936, 28(8): 988–994. DOI: 10.1021/ie50320a024.
    [17] 吉肖, 贾志海, 蔡小舒. 规则微观结构粗糙表面浸润性研究 [J]. 材料导报, 2013, 27(14): 142–146. DOI: 10.3969/j.issn.1005-023X.2013.14.038.

    JI Xiao, JIA Zhihai, CAI Xiaoshu. Study on the wetting behavior of rough surfaces with regular microstructures [J]. Materials Review, 2013, 27(14): 142–146. DOI: 10.3969/j.issn.1005-023X.2013.14.038.
  • 加载中
图(8)
计量
  • 文章访问数:  5420
  • HTML全文浏览量:  1556
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 修回日期:  2019-02-19
  • 网络出版日期:  2019-11-25
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回