Calculation methods for characteristic sizes of blasting cavities induced by finite-length cylindrical charges in soil
-
摘要: 为计算柱形药包土中爆腔尺寸,提出了一种有限长柱形药包在土中爆炸的特征尺寸近似计算方法,该方法利用球形药包爆腔膨胀准静态模型叠加的方式,给出了长径比较大情况下柱形药包爆腔特征尺寸及塑性区半径。与数值模拟对比表明,该方法的误差随长径比的增大而减小,当球形药包数量N=n、长径比在10及以上时,误差在12.2%以内,表明该方法能够较准确地预测有限长柱形药包爆腔的特征尺寸。Abstract: In order to calculate the cavity sizes for the cylindrical charges in soil, a new method was established to calculate the characteristic cavity sizes for finite-length cylindrical charges in soil. In the new method, the quasi-static model for spherical charges is used to calculate the cavities induced by cylindrical charges. In this method, the characteristic cavity sizes and the plastic zones are calculated at the larger length-to-diameter ratio. The numerical simulation results show that the error decreases with the increase of the length-to-diameter ratio, when the number N of the spherical explosive packages is n and the length-to-diameter ratio is 10 or higher, the error is less than 12.2%. The results also show that the established method can accurately predict the characteristic sizes of the cavities induced by the finite-length cylindrical charge blasting.
-
Key words:
- cylindrical charge /
- cavity size /
- plastic zone /
- length-to-diameter ratio
-
表 1 两种药包形成的爆腔特征尺寸
Table 1. Characteristic dimensions of blasting zones formed by two kinds of charge
划分方式 等体积球
个数半径/
mm爆腔长半轴/
mm爆腔短半轴/
mm爆腔离心率 塑性区长半轴/
mm塑性区短半轴/
mm塑性区离心率 柱形 38.84 530 200 0.377 4 800 570 0.712 5 球形 8 47.89 500 190 0.380 0 790 560 0.708 9 表 2 不同计算方式爆腔特征尺寸计算结果
Table 2. Characteristic sizes of blasting cavity calculated by different calculation methods
计算方式 半径/mm 爆腔长半轴/mm 爆腔短半轴/mm 离心率 柱形模拟 38.84 530 200 0.377 4 8个球形替代模拟 47.89 500 190 0.380 0 一维柱形理论计算 38.84 215.7 8个球形叠加近似计算 47.89 524.7 189.5 0.361 2 -
[1] 谢多夫. 力学中的相似方法与量纲理论[M]. 8版. 沈青, 译. 北京: 科学出版社, 1982: 235–282. [2] 王海亮, 冯长根, 王丽琼, 等. 爆炸衬砌试验研究 [J]. 爆炸与冲击, 2001, 21(4): 291–296.WANG Hailiang, FENG Changgen, WANG Liqiong, et al. The experimental investigation on explosive lining [J]. Explosion and Shock Waves, 2001, 21(4): 291–296. [3] 张奇. 岩石爆破的粉碎区及其空腔膨胀 [J]. 爆炸与冲击, 1990, 10(1): 68–75.ZHANG Qi. Smash districts and expanding of cavities in rock blasting [J]. Explosion and Shock Waves, 1990, 10(1): 68–75. [4] 王仲琦, 张奇, 白春华. 爆炸挤压粘土密度变化过程的数值模拟 [J]. 岩土工程学报, 2001, 23(3): 350–353.WANG Zhongqi, ZHANG Qi, BAI Chunhua. Numerical simulation on variation of density of the soil compacted by explosion [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 350–353. [5] 王海亮, 冯长根, 侯兆霞, 等. 土中爆炸成腔半径的计算 [J]. 爆破器材, 2001, 30(3): 19–22. DOI: 10.3969/j.issn.1001-8352.2001.03.005.WANG Hailiang, FENG Changgen, HOU Zhaoxia, et al. The calculation on radius of explosion cavity in soil [J]. Explosive Materials, 2001, 30(3): 19–22. DOI: 10.3969/j.issn.1001-8352.2001.03.005. [6] 林大能, 罗艾民, 胡伟. 条形装药爆破成腔半径的弹塑性估算 [J]. 岩土工程学报, 2003, 25(1): 84–86. DOI: 10.3321/j.issn:1000-4548.2003.01.018.LIN Daneng, LUO Aimin, HU Wei. Elastic-plastic evaluation of space diameter compacted by blasting with linear charges [J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 84–86. DOI: 10.3321/j.issn:1000-4548.2003.01.018. [7] 于成龙, 王仲琦. 球形装药爆腔预测的准静态模型 [J]. 爆炸与冲击, 2017, 37(2): 249–254. DOI: 10.11883/1001-1455(2017)02-0249-06.YU Chenglong, WANG Zhongqi. Quasi-static model for predicting explosion cavity with spherical charges [J]. Explosion and Shock Waves, 2017, 37(2): 249–254. DOI: 10.11883/1001-1455(2017)02-0249-06. [8] DRUKOVANYI M F, KRAVTSOV V S, CHERNYAVSKII Y E, et al. Calculation of fracture zones created by exploding cylindrical charges in ledge rocks [J]. Soviet Mining Science, 1976, 12(3): 292–295. DOI: 10.1007/BF02594873. [9] HUSTRULID W. Blasting principles for open pit mining [M]. Colorado: CRC Press, 1999: 980−999. [10] 邱从礼. 爆炸载荷下的岩土动态力学性能试验研究[D]. 北京: 北京理工大学, 2010: 29−60. [11] 龙源, 林学圣, 许连坡. 条形装药土中爆炸空腔发展过程的实验研究 [J]. 爆炸与冲击, 1988, 8(3): 227–235.LONG Yuan, LIN Xuesheng, XU Lianpo. Experimental research on growth process of the cavity of a strip-shaped explosive charge exploding in soil [J]. Explosion and Shock Waves, 1988, 8(3): 227–235.