Dynamic response characteristics of the protection system for a projectile-borne recorder under high impact loading
-
摘要: 为了给弹载记录仪的防护设计提供依据,从机械振动的角度揭示了高冲击载荷作用下弹载记录仪防护系统的动力学响应机理。在分析弹载记录仪内部载荷传递关系的基础上,基于双自由度弹簧-质量-阻尼系统建立了一种简化的防护系统动力学响应模型,并开展了数值模拟,通过脉冲响应分析和谐响应分析辨识了模型参数。理论计算与数值模拟的对比分析结果表明:建立的动力学响应模型能较准确地预测高冲击载荷作用下弹载记录仪防护系统的动力学响应特性。在此基础上,以模型的幅频响应特性为依据,分析了防护系统动力学响应特性随各种参数的变化规律。研究结果可为更有效地指导弹载记录仪的防护设计提供依据。Abstract: To provide an optimal direction for the protection design of a projectile-borne recorder, the dynamic response mechanism of the protection system for the projectile-borne recorder under high impact loading was revealed according to the mechanical vibration theory. On the basis of analysis for the load transfer relation, a simplified dynamic response model based on the two-degree-of-freedom spring-mass-damper system was established. To verify the credibility of the model, numerical simulation was carried out, and the parameters of the response model were identified according to the impulse response analysis and the harmonic analysis. Based on the result that the values of the theoretical calculation agreed well with those of the numerical simulation, it was concluded that the proposed model was more suitable to describe the dynamic response characteristics of the protection system under high impact loading. According to the amplitude-frequency response characteristics, the change of the dynamic response characteristics along various parameters was analyzed, which could be applied to guide the protection design of the projectile-borne recorder.
-
表 1 材料参数
Table 1. Material parameters
材料 密度/
(kg·m−3)弹性模量/
GPa泊松比 屈服强度/
MPa安装基座 7 800 210 0.30 835 机械壳体 4 500 110 0.34 820 缓冲材料 1 500 0.15 0.41 50 电路组件 2 455 110 0.34 820 -
[1] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2. [2] ZHANG W D, CHEN L J, XIONG J J, et al. Ultra-high g deceleration-time measurement for the penetration into steel target [J]. International Journal of Impact Engineering, 2007, 34(3): 436–447. DOI: 10.1016/j.ijimpeng.2006.01.008. [3] 文丰, 任勇峰, 王强. 高冲击随弹测试固态记录器的设计与应用 [J]. 爆炸与冲击, 2009, 29(2): 221–224. DOI: 10.11883/1001-1455(2009)02-0221-04.WEN Feng, REN Yongfeng, WANG Qiang. Design of a missile-borne solid-state recorder for high-shock test and its application [J]. Explosion and Shock Waves, 2009, 29(2): 221–224. DOI: 10.11883/1001-1455(2009)02-0221-04. [4] FAN J B, WANG Y, ZU J, et al. Triaxial acceleration measurement for oblique penetration into concrete target [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(11): 2907–2913. DOI: 10.1109/TIM.2009.2027767. [5] 赵小龙, 马铁华, 徐鹏, 等. 弹丸侵彻混凝土加速度信号测试及分析 [J]. 爆炸与冲击, 2014, 34(3): 347–353. DOI: 10.11883/1001-1455(2014)03-0347-07.ZHAO Xiaolong, MA Tiehua, XU Peng, et al. Acceleration signal test and analysis for projectile penetrating into concrete [J]. Explosion and Shock Waves, 2014, 34(3): 347–353. DOI: 10.11883/1001-1455(2014)03-0347-07. [6] 曹娟, 张合, 王晓锋. 硬目标侵彻引信隔离防护优化研究 [J]. 振动与冲击, 2015, 34(24): 192–196. DOI: 10.13465/j.cnki.jvs.2015.24.032.CAO Juan, ZHANG He, WANG Xiaofeng. Optimization of isolated protection for the hard-target penetration fuze [J]. Journal of Vibration and Shock, 2015, 34(24): 192–196. DOI: 10.13465/j.cnki.jvs.2015.24.032. [7] 陈闯, 王晓鸣, 李文彬, 等. 多层介质阻抗匹配对隔爆效果的影响 [J]. 振动与冲击, 2014, 33(17): 105–110. DOI: 10.13465/j.cnki.jvs.2014.17.019.CHEN Chuang, WANG Xiaoming, LI Wenbin, et al. Influence of multilayered media impedance matching on explosion interruption effect [J]. Journal of Vibration and Shock, 2014, 33(17): 105–110. DOI: 10.13465/j.cnki.jvs.2014.17.019. [8] 王俊峰, 祖静, 尤文斌, 等. 基于ANSYS的弹载记录仪优化设计分析 [J]. 应用力学学报, 2015, 32(1): 163–166. DOI: 10.11776/cjam.32.01.B033.WANG Junfeng, ZU Jing, YOU Wenbin, et al. The optimization design and analysis of missile-borne recorder based on ANSYS [J]. Chinese Journal of Applied Mechanics, 2015, 32(1): 163–166. DOI: 10.11776/cjam.32.01.B033. [9] 徐蓬朝, 黄惠东, 张龙山, 等. 垫片提高抗冲击能力的应力波衰减机理 [J]. 探测与控制学报, 2012, 34(2): 1–6. DOI: 10.3969/j.issn.1008-1194.2012.02.001.XU Pengzhao, HUANG Huidong, ZHANG Longshan, et al. Stress wave reflecting attenuation to improve anti-shock capacity by gasket [J]. Journal of Detection and Control, 2012, 34(2): 1–6. DOI: 10.3969/j.issn.1008-1194.2012.02.001. [10] 焦敏, 陈小伟, 阮朝阳, 等. 灌封材料对弹载电子器件的防护仿真研究 [J]. 兵工学报, 2014, 35(S2): 51–56.JIAO Min, CHEN Xiaowei, RUAN Zhaoyang, et al. Numerical analysis on potting protection of electronic components in projectile [J]. Acta Armamentarii, 2014, 35(S2): 51–56. [11] 刘建伟, 裴东兴, 尤文斌, 等. 回收式固态弹载记录仪抗高冲击设计 [J]. 传感技术学报, 2012, 25(8): 1045–1048. DOI: 10.3969/j.issn.1004-1699.2012.08.005.LIU Jianwei, PEI Dongxing, YOU Wenbin, et al. Anti-high overload excogitation of missile and hard recovery parameters recorder [J]. Chinese Journal of Sensors and Actuators, 2012, 25(8): 1045–1048. DOI: 10.3969/j.issn.1004-1699.2012.08.005. [12] 季文美. 机械振动[M]. 北京: 科学出版社, 2016: 168−169. [13] 胡寿松. 自动控制原理[M]. 6版. 北京: 科学出版社, 2013: 71−78. [14] 丁旭杰. 非线性隔振抗冲器的设计与建模研究[D]. 上海: 上海交通大学, 2008: 65−66.DING Xujie. Study on the design and modeling of nonlinear vibration and shock isolator [D]. Shanghai: Shanghai Jiaotong University, 2008: 65−66. [15] 崔春生, 马铁华, 祖静, 等. 引信发射环境多参数动态实测与分析 [J]. 振动与冲击, 2012, 31(21): 94–97. DOI: 10.3969/j.issn.1000-3835.2012.21.019.CUI Chunsheng, MA Tiehua, ZU Jing, et al. Measurement and analysis of dynamic parameters in fuse launch environment [J]. Journal of Vibration and Shock, 2012, 31(21): 94–97. DOI: 10.3969/j.issn.1000-3835.2012.21.019. [16] 王森, 徐蓬朝, 黄惠东. 基于谐响应分析的侵彻引信薄弱环节分析方法 [J]. 探测与控制学报, 2017, 39(3): 12–16.WANG Sen, XU Pengzhao, HUANG Huidong. Harmonic analysis method of penetration fuze weak link [J]. Journal of Detection and Control, 2017, 39(3): 12–16. [17] 王琳, 王富耻, 王鲁, 等. 空心弹体垂直侵彻混凝土靶板的应变测试研究 [J]. 北京理工大学学报, 2002, 22(4): 453–456. DOI: 10.3969/j.issn.1001-0645.2002.04.014.WANG Lin, WANG Fuchi, WANG Lu, et al. Strain measurement in hollow projectiles impacting concrete targets [J]. Journal of Beijing Institute of Technology, 2002, 22(4): 453–456. DOI: 10.3969/j.issn.1001-0645.2002.04.014. [18] 程兴旺, 王富耻, 王鲁, 等. 钨合金壳体侵彻混凝土靶板过程壳体应变的实验测试 [J]. 兵工学报, 2004, 25(1): 102–105. DOI: 10.3321/j.issn:1000-1093.2004.01.026.CHENG Xingwang, WANG Fuchi, WANG Lu, et al. Experimental study on the strain history of critical section during a normal penetration of tungsten alloy shell into a concrete target [J]. Acta Armamentarii, 2004, 25(1): 102–105. DOI: 10.3321/j.issn:1000-1093.2004.01.026. [19] 皮爱国, 黄风雷. 大长细比结构弹体侵彻2024-O铝靶的弹塑性动力响应 [J]. 爆炸与冲击, 2008, 28(3): 252–260. DOI: 10.11883/1001-1455(2008)03-0252-09.PI Aiguo, HUANG Fenglei. Elastic-plastic dynamic response of slender projectiles penetrating into 2024-O aluminum targets [J]. Explosion and Shock Waves, 2008, 28(3): 252–260. DOI: 10.11883/1001-1455(2008)03-0252-09.