12.7 mm动能弹斜侵彻复合装甲的数值模拟研究

王维占 赵太勇 冯顺山 杨宝良 李小军 陈智刚

王维占, 赵太勇, 冯顺山, 杨宝良, 李小军, 陈智刚. 12.7 mm动能弹斜侵彻复合装甲的数值模拟研究[J]. 爆炸与冲击, 2019, 39(12): 123301. doi: 10.11883/bzycj-2018-0425
引用本文: 王维占, 赵太勇, 冯顺山, 杨宝良, 李小军, 陈智刚. 12.7 mm动能弹斜侵彻复合装甲的数值模拟研究[J]. 爆炸与冲击, 2019, 39(12): 123301. doi: 10.11883/bzycj-2018-0425
WANG Weizhan, ZHAO Taiyong, FENG Shunshan, YANG Baoliang, LI Xiaojun, CHEN Zhigang. Numerical simulation study on penetration of a 12.7 mm kinetic energy bullet into a composite armor[J]. Explosion And Shock Waves, 2019, 39(12): 123301. doi: 10.11883/bzycj-2018-0425
Citation: WANG Weizhan, ZHAO Taiyong, FENG Shunshan, YANG Baoliang, LI Xiaojun, CHEN Zhigang. Numerical simulation study on penetration of a 12.7 mm kinetic energy bullet into a composite armor[J]. Explosion And Shock Waves, 2019, 39(12): 123301. doi: 10.11883/bzycj-2018-0425

12.7 mm动能弹斜侵彻复合装甲的数值模拟研究

doi: 10.11883/bzycj-2018-0425
详细信息
    作者简介:

    王维占(1990- ),男,博士研究生,530056679@qq.com

    通讯作者:

    赵太勇(1971- ),男,博士,副教授,1043414401@qq.com

  • 中图分类号: O382; TJ55

Numerical simulation study on penetration of a 12.7 mm kinetic energy bullet into a composite armor

  • 摘要: 通过弹道枪实验对斜置角度为0°~60°的陶瓷复合装甲进行了弹道极限测试,分析了靶板斜置角度对穿燃弹的弹道极限和钢芯质量变化、破坏形态的影响。利用数值模拟的方法对上述实验结果进行验证计算,鉴于数值计算结果与实验结果较好的一致性,进一步研究了陶瓷复合靶板斜置角度对穿燃弹钢芯穿靶偏移角和等效Q235钢靶厚度的影响。结果表明,随陶瓷复合靶板斜置角度的增大:弹道极限近似指数型提高;在相同弹道极限速度下,穿燃弹对Q235钢靶板的极限穿深和对斜置陶瓷复合靶板的极限穿深的等效厚度的比也随之增大;同时,钢芯完整度逐渐降低,穿靶偏移角反向增大。
  • 图  1  实验用12.7 mm穿燃弹及陶瓷复合靶板

    Figure  1.  A 12.7 mm armor-piercing bullet and a ceramic composite target plate used in experiments

    图  2  实验装置及场地布置

    Figure  2.  Experimental setup and site layout

    图  3  弹靶有限元模型

    Figure  3.  Finite element models for bullet and target

    图  4  部分回收钢芯式样及对应靶入、出孔图

    Figure  4.  Part of recovery steel core styles and corresponding into- and out-of-target holes

    图  5  部分钢芯及弹头壳的破坏形态

    Figure  5.  Failure modes of some steel cores and warhead shells

    图  6  陶瓷复合靶及穿燃弹钢芯的破坏形态

    Figure  6.  Failure modes of ceramic composite targets and steel cores of piercing incendiary bullets

    图  7  钢芯剩余质量与靶板斜置角度的关系

    Figure  7.  Residual mass of steel core varied with oblique angle of target plate

    图  8  弹道极限与靶板斜置角度的关系

    Figure  8.  Ballistic limit varied with oblique angle of target plate

    图  9  不同靶板斜置角度下实验钢芯试样破坏形态与数值模拟得到的钢芯应力云图

    Figure  9.  Failure patterns of steel core specimens used in experiments and stress distribution in ones by numerical simulation at different oblique angles of target plates

    图  10  斜侵彻复合靶等效厚度H

    Figure  10.  Equivalent thickness H of an obliquely-penetrated composite target

    图  12  子弹钢芯穿靶偏移角Δθ

    Figure  12.  Deflection angle Δθ of bullet steel core penetrating through target plate

    图  11  正侵彻等效Q235钢靶厚度h

    Figure  11.  Thickness h of an equivalent normally-penetrated Q235 steel target

    图  13  等效正侵彻Q235钢靶极限穿深条件下的弹靶破坏形态

    Figure  13.  Failure patterns of bullet and target under the limit penetration depth of equivalent Q235 steel target

    图  14  靶板斜置角度与钢芯穿靶偏移角的关系

    Figure  14.  Deflection angle of bullet steel core penetrating through target varied with oblique angle of target plate

    图  15  靶板等效厚度与靶板斜置角度的关系

    Figure  15.  Relation between equivalent thickness of target plate and its oblique angle

    图  16  陶瓷复合靶板和Q235钢靶的等效厚度比与靶板斜置角度的关系

    Figure  16.  Equivalent-thickness ratio of ceramic composite target to Q235 steel target varied with their oblique angle

    表  1  12.7 mm穿燃弹侵彻陶瓷复合靶板实验的部分有效数据

    Table  1.   Part of effective experimental data for penetration of 12.7 mm piercing incendiary bullets into ceramic composite targets

    实验编号靶板斜置角度/(°)着靶速度/(m·s−1)穿透情况背靶穿孔尺寸/mm钢芯剩余质量/g
    1# 576穿透13.228.4
    0 593穿透14.730.1
    521嵌入 5.926.8
    2# 637穿透13.923.6
    15 593嵌入14.322.1
    579嵌入 7.620.7
    3# 693穿透13.117.6
    30 645嵌入 7.113.9
    713穿透15.115.1
    4# 789嵌入 8.311.0
    45 765未嵌入15.6
    833穿透14.314.4
    5#1 086嵌入 4.9 8.1
    601 213穿透13.3 6.0
    1 179穿透14.7 9.3
    下载: 导出CSV

    表  2  不同斜置角度下穿燃弹的弹道极限范围

    Table  2.   Ballistic limit range of piercing incendiary bullets at different oblique angles

    靶板斜置角度/(°)弹道极限/(m·s−1)靶板斜置角度/(°)弹道极限/(m·s−1)
    0521~57645789~833
    15579~637601 086~1 179
    30645~693
    下载: 导出CSV

    表  3  12.7 mm穿燃弹侵彻陶瓷复合靶板的结果

    Table  3.   Results of 12.7 mm piercing incendiary bullets penetrating into ceramic composite target plates

    靶板斜置角度/(°)弹道极限/(m·s−1)剩余质量/g靶板斜置角度/(°)弹道极限/(m·s−1)剩余质量/g
    060026.445 9259.3
    1567518.1601 3756.7
    3077012.5
    下载: 导出CSV

    表  4  12.7 mm穿燃弹对复合靶和Q235钢靶的侵彻参数

    Table  4.   Penetration parameters of 12.7 mm armor-piercing incendiary on composite target and Q235 steel

    靶板斜置角度θ/(°)钢芯偏移角Δθ/(°)等效复合靶厚度H/mm等效Q235钢靶厚度h/mmH/h
    0 −0.816.0100.63
    15 −2.816.6120.72
    30 −4.218.5150.81
    45 −7.622.6190.83
    60−11.532.0280.88
    下载: 导出CSV
  • [1] 孙英. 枪弹对陶瓷/凯芙拉复合靶板的侵彻机理研究[D]. 南京: 南京理工大学, 2010: 66−68. DOI: 10.766/d.y1697767.
    [2] ROSEBERG Z, TSALIAH J. Applying Tate’s model for the interaction of long rod projectiles with ceramic targets [J]. International Journal of Impact Engineering, 1990, 9(2): 247–251. DOI: 10.1016/0734-743X(90)90016-O.
    [3] ROSENBERG Z, DEKEL E. 终点弹道学[M]. 钟方平, 译. 北京: 国防工业出版社, 2014: 123−134.
    [4] 李继承, 陈小伟. 柱形长杆弹侵彻的界面击溃分析 [J]. 爆炸与冲击, 2011, 31(2): 141–147.

    LI Jicheng, CHEN Xiaowei. Theoretical analysis on the interface defeat of a long rod penetration [J]. Explosion and Shock Waves, 2011, 31(2): 141–147.
    [5] ANDERSON C E Jr, HOLMQUIST T J, ORPHAL D L, et al. Dwell and interface defeat on borosilicate glass [J]. International Journal of Applied Ceramic Technology, 2010, 7(6): 776–786. DOI: 10.1111/j.1744-7402.2009.02478.x.
    [6] CHI R Q, SERJOUEI A, SRIDHAR I, et al. Pre-stress effect on confined ceramic armor ballistic performance [J]. International Journal of Impact Engineering, 2015, 84: 159–170. DOI: 10.1016/j.ijimpeng.2015.05.011.
    [7] CHI R Q, SERJOUEI A, SRIDHAR I, et al. Ballistic impact on bi-layer alumina/aluminum armor: a semi-analytical approach [J]. International Journal of Impact Engineering, 2013, 52: 37–46. DOI: 10.1016/j.ijimpeng.2012.10.001.
    [8] 李继承, 陈小伟. 尖锥头长杆弹侵彻的界面击溃分析 [J]. 力学学报, 2011, 43(1): 63–70. DOI: 10.6052/0459-1879-2011-1-lxxb2009-782.

    LI Jicheng, CHEN Xiaowei. Theoretical analysis on the interface defeat of a conical-nosed projectile penetration [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 63–70. DOI: 10.6052/0459-1879-2011-1-lxxb2009-782.
    [9] LI J C, CHEN X W, NING F. Comparative analysis on the interface defeat between the cylindrical and conical-nosed long rods [J]. International Journal of Protective Structures, 2014, 5(1): 21–46. DOI: 10.1260/2041-4196.5.1.21.
    [10] LI J C, CHEN X W, NING F, et al. On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets [J]. International Journal of Impact Engineering, 2015, 83: 37–46. DOI: 10.1016/j.ijimpeng.2015.04.003.
    [11] 谈梦婷, 张先锋, 何勇, 等. 长杆弹撞击装甲陶瓷的界面击溃效应数值模拟 [J]. 兵工学报, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008.

    TAN Mengting, ZHANG Xianfeng, HE Yong, et al. Numerical simulation on interface defeat of ceramic armor impacted by long-rod projectile [J]. Acta Armamentarii, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008.
    [12] 汪建锋, 傅苏黎, 丁华东. 陶瓷基装甲抗枪弹机理研究现状 [J]. 装甲兵工程学院学报, 2004, 18(3): 62–65; 72. DOI: 10.3969/j.issn.1672-1497.2004.03.018.

    WANG Jianfeng, FU Suli, DING Huadong. Current situation in anti-ballistic mechanism about ceramic matrix armor [J]. Journal of Academy of Armorde Force Engineering, 2004, 18(3): 62–65; 72. DOI: 10.3969/j.issn.1672-1497.2004.03.018.
    [13] 丁华东, 许艺, 巴国召, 等. 陶瓷基复合装甲防12.7 mm穿甲燃烧弹的靶试研究: Ⅳ [J]. 装甲兵工程学院学报, 2013, 27(2): 75–79. DOI: 10.11732/j.issn.1672-1497.2013.02.016.

    DING Huadong, XU Yi, BA Guozhao, et al. Ceramic matrix composite armour against the 12.7 mm wear incendiary target test research: Ⅳ [J]. Journal of Academy of Armorde Force Engineering, 2013, 27(2): 75–79. DOI: 10.11732/j.issn.1672-1497.2013.02.016.
    [14] 丁华东, 方宁象, 王玉湘, 等. 陶瓷基复合装甲防12.7 mm穿甲燃烧弹的靶试研究: Ⅲ [J]. 装甲兵工程学院学报, 2013, 27(1): 86–89. DOI: 10.11732/j.issn.1672-1497.2013.01.018.

    DING Huadong, FANG Ningxiang, WANG Yuxiang, et al. Target experiment about ceramics-based composite armour against 12.7 mm armor piercing incendiary: Ⅲ [J]. Journal of Academy of Armored Force Engineering, 2013, 27(1): 86–89. DOI: 10.11732/j.issn.1672-1497.2013.01.018.
    [15] 丁华东, 方宁象, 刘云峰, 等. 陶瓷基复合装甲防12.7 mm穿甲燃烧弹的靶试研究: Ⅱ [J]. 装甲兵工程学院学报, 2012, 26(2): 77–79. DOI: 10.3969/j.issn.1672-1497.2012.02.017.

    DING Huadong, FANG Ningxiang, LIU Yunfeng, et al. Ceramic matrix composite armour against the 12.7 mm wear incendiary target test research:Ⅱ [J]. Journal of Academy of Armorde Force Engineering, 2012, 26(2): 77–79. DOI: 10.3969/j.issn.1672-1497.2012.02.017.
    [16] 丁华东, 方宁象, 刘云峰, 等. 陶瓷基复合装甲防12.7 mm穿甲燃烧弹的靶试研究:Ⅰ [J]. 装甲兵工程学院学报, 2012, 26(1): 78–81. DOI: 10.3969/j.issn.1672-1497.2012.01.017.

    DING Huadong, FANG Ningxiang, LIU Yunfeng, et al. Ceramic matrix composite armour against the 12.7 mm wear incendiary targettestresearch:Ⅰ [J]. Journal of Academy of Armorde Force Engineering, 2012, 26(1): 78–81. DOI: 10.3969/j.issn.1672-1497.2012.01.017.
    [17] 陈斌, 于起峰, 杨跃能, 等. 30 mm半穿甲弹斜侵彻陶瓷/钢复合装甲的弹着角效应研究 [J]. 国防科技大学学报, 2009, 31(6): 139–143. DOI: 10.3969/j.issn.1001-2486.2009.06.026.

    CHEN Bin, YU Qifeng, YANG Yueneng, et al. Effect of impact angle of 30 mm semi-AP projectile obliquely penetrating ceramic/steel targets [J]. Journal of National University of Defense Technology, 2009, 31(6): 139–143. DOI: 10.3969/j.issn.1001-2486.2009.06.026.
    [18] 郭英男. 陶瓷面板复合装甲抗冲击性能及其构型设计研究[D]. 西安: 西北工业大学, 2016: 124−126.

    GUO Yingnan. Research on the ballistic impact behavior and configuration of ceramic faced composite armour [D]. Xi’an: Northwestern Polytechnical University, 2016: 124−126.
    [19] 侯二永. 陶瓷间隙靶抗12.7 mm穿甲燃烧弹机理及性能研究[D]. 长沙: 国防科学技术大学, 2008: 56−61.

    HOU Eryong. Investigation of mechanism and performance of spaced ceramic target under impact of 12.7 mm armor piercing projectile [D]. Changsha: National University of Defense Technology, 2008: 56−61.
    [20] 李小军, 王维占, 张银, 等. 7.62 mm穿甲子弹斜侵彻复合装甲仿真研究 [J]. 装甲兵工程学院学报, 2018, 32(5): 71–75. DOI: 10.3969/j.issn.1672-1497.2018.05.013.

    LI Xiaojun, WANG Weizhan, ZHANG Yin, et al. Simulation study on oblique penetration of 7.62 mm armour-piercing projectile into composite armour [J]. Journal of Academy of Armored Force Engineering, 2018, 32(5): 71–75. DOI: 10.3969/j.issn.1672-1497.2018.05.013.
    [21] 张国伟. 终点效应及其应用技术[M]. 北京: 国防工业出版社, 2006: 33−56.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  4815
  • HTML全文浏览量:  1868
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 修回日期:  2019-03-12
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回