• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

12.7 mm动能弹斜侵彻复合装甲的数值模拟研究

王维占 赵太勇 冯顺山 杨宝良 李小军 陈智刚

周宁, 张冰冰, 冯磊, 耿莹, 姜帅, 张路. 反射波对预混气体爆炸过程与管壁动态响应的影响[J]. 爆炸与冲击, 2016, 36(4): 541-547. doi: 10.11883/1001-1455(2016)04-0541-07
引用本文: 王维占, 赵太勇, 冯顺山, 杨宝良, 李小军, 陈智刚. 12.7 mm动能弹斜侵彻复合装甲的数值模拟研究[J]. 爆炸与冲击, 2019, 39(12): 123301. doi: 10.11883/bzycj-2018-0425
Zhou Ning, Zhang Bingbing, Feng Lei, Geng Ying, Jiang Shuai, Zhang Lu. Effects of reflected wave on premixed-gas explosion and dynamic response of tube shells[J]. Explosion And Shock Waves, 2016, 36(4): 541-547. doi: 10.11883/1001-1455(2016)04-0541-07
Citation: WANG Weizhan, ZHAO Taiyong, FENG Shunshan, YANG Baoliang, LI Xiaojun, CHEN Zhigang. Numerical simulation study on penetration of a 12.7 mm kinetic energy bullet into a composite armor[J]. Explosion And Shock Waves, 2019, 39(12): 123301. doi: 10.11883/bzycj-2018-0425

12.7 mm动能弹斜侵彻复合装甲的数值模拟研究

doi: 10.11883/bzycj-2018-0425
详细信息
    作者简介:

    王维占(1990- ),男,博士研究生,530056679@qq.com

    通讯作者:

    赵太勇(1971- ),男,博士,副教授,1043414401@qq.com

  • 中图分类号: O382; TJ55

Numerical simulation study on penetration of a 12.7 mm kinetic energy bullet into a composite armor

  • 摘要: 通过弹道枪实验对斜置角度为0°~60°的陶瓷复合装甲进行了弹道极限测试,分析了靶板斜置角度对穿燃弹的弹道极限和钢芯质量变化、破坏形态的影响。利用数值模拟的方法对上述实验结果进行验证计算,鉴于数值计算结果与实验结果较好的一致性,进一步研究了陶瓷复合靶板斜置角度对穿燃弹钢芯穿靶偏移角和等效Q235钢靶厚度的影响。结果表明,随陶瓷复合靶板斜置角度的增大:弹道极限近似指数型提高;在相同弹道极限速度下,穿燃弹对Q235钢靶板的极限穿深和对斜置陶瓷复合靶板的极限穿深的等效厚度的比也随之增大;同时,钢芯完整度逐渐降低,穿靶偏移角反向增大。
  • 天然气泄漏爆炸事故是油气储运过程中备受关注的问题,气体爆炸导致输气管道撕裂使事故后果更加严重。因此,对可燃气体在受限和非受限空间内的燃烧以及爆炸规律的研究就显得非常重要。周凯元等[1]通过管道内丙烷/空气的预混气体爆燃实验,研究了管道直径、点火能量以及障碍物等因素对爆燃波火焰阵面传播的影响规律。林伯泉等[2-3]也分析了瓦斯爆炸过程中障碍物对火焰传播的加速机理及其对爆炸过程中的激波诱导作用。陈先锋等[4]研究了瓦斯爆炸火焰的动力学行为及其对火焰阵面结构的影响规律。丁以斌等[5-6]通过实验研究了不同样式的平面障碍物和立体结构障碍物对于火焰传播规律的影响。然而,对于密闭输气管道中传播的爆炸波会由于阻火器等连接元件的作用产生较强的反射波,而以往关于该种反射波对预混气体爆炸火焰与压力波传播规律的影响机理的研究并不多。反射波对火焰阵面传播规律的影响,往往与反射波强度以及反射波与火焰相互作用的位置相关[7]。此外,内载爆炸波作用下输气管道管壁的动力学响应及其破坏规律目前研究也不够深入,亟需加强该方面的研究。基于长输管道的安全设计和安全运营,本文中开展末端闭口(闭口端)和末端开口(开口端)工况下甲烷/空气混合气体的燃爆实验,通过对火焰速度、爆炸压力和管壁环向应变的测量,探讨末端反射激波对气体反应及管道响应的影响,以期为后续研究提供一定参考。

    实验装置主要由配气系统、抽真空系统、点火系统和数据采集系统构成,如图 1所示。配气系统包括空压机、40 L体积分数为99.9%的甲烷储气瓶和预混气体储罐,实验时按照实验要求配置所需不同组分的预混气体。主体实验管道为316型不锈钢钢管,内径125 mm,外径136 mm,壁厚5.5 mm,总长12 m,设计最大可承受内压为5 MPa。点火系统采用EPT-6点火能量试验台,点火能量可调,最大点火能量1 000 mJ。

    图  1  实验装置图
    Figure  1.  Schematic of experimental setup

    为研究管道内气体爆炸的火焰和压力传播规律以及管道的动态响应,分别在管道上布设光电传感器、压力传感器和应变传感器进行实验测量。传感器的布置如图 2所示,自点火端开始,共布置10个光电传感器,6个压力传感器和2个应变传感器,如表 1所示,L为距离点火端距离。由于管道内爆炸波压力较低(预计初始压力约0.2 MPa),因此产生的应变较小,采用半导体应变片来监测管壁的环向应变,该半导体应变片灵敏度约为普通电阻式应变计的55倍,可以监测更小范围内的动态应变信号。

    图  2  传感器测点布置
    Figure  2.  Arrangement of sensors
    表  1  管道上传感器布置
    Table  1.  Arrangement of sensors on the blast tube
    编号 传感器类型 L/m
    S1 光电 1.0
    S2 光电 1.5
    S3 光电 2.5
    S4 光电 3.5
    S5 光电 4.5
    S6 光电 5.5
    S7 光电 6.5
    S8 光电 8.0
    S9 光电 9.0
    S10 光电 10.0
    S11 压力 1.0
    S12 压力 2.5
    S13 压力 4.5
    S14 压力 6.5
    S15 压力 8.0
    S16 压力 10.0
    S17 应变 6.5
    S18 应变 8.0
    下载: 导出CSV 
    | 显示表格

    实验在常温常压下进行,实验中配置的甲烷的体积分数为10.2%,点火能量为1 000 mJ。为研究反射波对管道内预混气体爆炸过程与管道动态响应的影响,开展末端闭口和末端开口2种工况的实验。为使管道内产生较强的前驱冲击波从而获得较大的管道加载效应,在点火端放置一组由6片阻塞率为60%的圆环形钢片串联而成的加速障碍物,环形钢片间距为15 cm,障碍物前端距离点火电极25 cm。

    图 3(a)~(b)所示为甲烷体积分数为10.2%时,末端闭口和末端开口2种工况下的管道内各测点的压力时程曲线。从图中可以看出,经过障碍物的激励加速后(0.25~1.00 m),激波的上升沿逐渐变得较为陡峭(S11~S13段),距离点火端1.0 m处,爆炸激波的峰值压力约为0.3 MPa,在激波向下游传播的过程中,峰值压力逐渐降低。对于闭口端实验,爆炸激波到达末端后,在盲板的固壁反射作用下产生反射激波,反射激波自管道末端向点火端传播,并与当地压力波叠加产生更高的压力峰值,如图 3(a)所示。对于开口端实验,由于管道末端直接连通大气,因此在爆炸激波到达末端时,会向管道点火端反射回稀疏波,稀疏波自末端向点火端传播,并与当地压力叠加后产生负压,如图 3(b)所示。

    图  3  不同工况下管道内各点压力时程曲线
    Figure  3.  Pressure histories from different test points in experimental tubes

    图 4(a)~(b)分别为末端闭口和末端开口工况下距点火端6.5 m处管壁的应变时程曲线,由图中知,闭口工况下,管壁的动态响应过程非常复杂,管壁应变时程曲线清晰地反映了激波在前后管端的来回反射形成的压力叠加对管道的加载作用。当爆炸激波在管道内来回反射时,管道内的压力会反复叠加,导致管壁周期性地膨胀与收缩。该应变信号主要分为2个部分,首先由激波引起的初始动态应变,其后随着反射激波的往返作用,应变曲线出现较长时间的震荡信号。对于开口端实验,爆炸激波首先导致管壁产生1个环向的冲击应变,其后由于惯性作用,出现收缩现象,但最大应变远小于闭口端实验时产生的应变最大。

    图  4  不同工况下管道应变时程曲线
    Figure  4.  Strain histories in different experimental cases

    图 5所示为闭口端实验测得的4个典型位置的压力和光电信号对比图。由图知,随着气体爆炸向管道下游的传播,火焰与压力信号之间时差逐渐增大,即激波逐渐与火焰阵面分离。当激波传播到管道末端时,在盲板处产生反射,反射激波为压缩波并由管道的末端向点火端传播。当末端反射激波与燃烧反应区相遇时,对应时刻的光电信号出现1个阶跃峰值,如图 5(a)~(c)红线框内部分(约0.03 s处)所示,即在反射激波的作用下,此处火焰亮度增加,然而由于无法确定此时气体是否燃烧完全,火焰亮度的增大有可能是反射激波增大了波阵面后方燃烧区预混气体的扰动,因此对当地气体燃烧起到了正激励的作用;另一种情况是,如果此时气体已经完全燃烧,则此时只是反向激波对火焰厚度方向的压缩作用导致的亮度增大。而在管道后段(S8~S10段),由光电信号幅值较低,火焰亮度下降,光电信号的变化反映了明显的火焰淬熄,然后又复燃的现象。林柏泉等[7]研究表明,当一维受限空间内反射激波与在火焰内部与反应区相遇时,对火焰的传播速度并无明显影响,但可能造成火焰内部的分离现象,而从图 5(c)~(d)可知,火焰阵面与反射激波相遇在S8和S10之间,因此分析认为S8所测火焰的熄灭与复燃应该是由反射波的气体伴流作用导致的火焰分离现象。对于图 5(d)中的对比信号(S10与S16),首次末端反射激波通过测点时,火焰阵面尚未传播到该区域,反射激波对火焰传播无影响,此后的火焰内部也有压力作用下火焰亮度增大以及火焰的熄灭与复燃现象,但S10处气体反应已处于反射波流场中,由于缺乏更多的探测手段,此时是否是残留可燃气体的作用导致S10信号的突变目前无法详细解释。

    图  5  末端闭口工况下典型位置处光电与压力信号对比
    Figure  5.  Pressure and flame signals at typical positions in close-ended tube

    图 6所示为末端开口实验测得的4个典型位置的压力与光电信号对比图,由于末端开口,初始激波到达末端后产生的反射波为稀疏波并向点火端传播,稀疏波的到达使得测点处压力迅速下降直至出现负压区,此外稀疏波引起的伴流方向与火焰传播方向相同,会加速火焰传播,但同时会拉长火焰厚度,因此会使得火焰亮度下降,如图 6框内部分中所示,在稀疏波作用区,当地压力降低,对应的光电信号也呈现出迅速下降的趋势。

    图  6  末端开口工况下典型位置处光电与压力信号对比
    Figure  6.  Pressure and flame signals at typical positions in open-ended tube

    为分析内部气体爆炸过程中管道的响应规律,选取第1组应变传感器所测应变信号进行分析,并将其与同一位置处所测压力信号进行对比,如图 7所示。图 7(a)(b)分别为闭口端和开口端实验距离点火端6.5 m处压力和应变信号的对比图。

    图  7  末端反射激波对管道内压力波传播与管壁应变的影响
    Figure  7.  Effect of the reflected shock wave on the pressure and strain in the tube

    图 7(a)可知,在管道末端闭口条件下,管壁的环向应变主要有2个部分构成:首先,在爆炸产生的前驱激波作用下,管道呈现环向膨胀状态,即图中框内部分;其次,由于压力激波在管道前端和末端来回反射,管道内压力水平逐次升高,会对管壁实现逐次的加载,产生较大的环向应变,应变信号与压力信号呈现出较好的一致性。此后相当一段时间内,激波在来回反射的过程中逐渐衰减,管道内压下降,管壁应变也随之逐渐趋于初始状态。即对于末端闭口空间内的管道气体爆炸实验,管壁环向应变的最大值是由激波在管道内来会反射逐次加载产生的。末端开口时,由图 7(b)可知,管壁产生的应变主要由前驱激波引起,当管道内压力在端部稀疏波的作用下迅速降为负压直至压力归零的过程中,管壁应变也随之迅速降低,即开口端实验所产生的最大应变是由激波引起的。

    (1) 密闭管道内气体爆炸时,末端反射激波与火焰相交时,反射激波提高了火焰传播区域的预混气体反应剧烈程度,反射激波作用下火焰亮度增加。

    (2) 密闭管道内气体爆炸时,末端反射激波作用下相应地出现当地火焰亮度增大现象,而前端反射波则有可能引起内部火焰分离而导致测量信号的熄灭与复燃现象。

    (3) 管道末端闭口工况下,管壁的最大环向应变是由激波在管道两端产生的来回反射叠加所引起的,应变较大,管壁的环向应变时程关系与该处压力时程关系具有良好的一致性;而末端开口时,管壁的应变主要由前驱波引起,最大应变比末端闭口工况下的应变小。

  • 图  1  实验用12.7 mm穿燃弹及陶瓷复合靶板

    Figure  1.  A 12.7 mm armor-piercing bullet and a ceramic composite target plate used in experiments

    图  2  实验装置及场地布置

    Figure  2.  Experimental setup and site layout

    图  3  弹靶有限元模型

    Figure  3.  Finite element models for bullet and target

    图  4  部分回收钢芯式样及对应靶入、出孔图

    Figure  4.  Part of recovery steel core styles and corresponding into- and out-of-target holes

    图  5  部分钢芯及弹头壳的破坏形态

    Figure  5.  Failure modes of some steel cores and warhead shells

    图  6  陶瓷复合靶及穿燃弹钢芯的破坏形态

    Figure  6.  Failure modes of ceramic composite targets and steel cores of piercing incendiary bullets

    图  7  钢芯剩余质量与靶板斜置角度的关系

    Figure  7.  Residual mass of steel core varied with oblique angle of target plate

    图  8  弹道极限与靶板斜置角度的关系

    Figure  8.  Ballistic limit varied with oblique angle of target plate

    图  9  不同靶板斜置角度下实验钢芯试样破坏形态与数值模拟得到的钢芯应力云图

    Figure  9.  Failure patterns of steel core specimens used in experiments and stress distribution in ones by numerical simulation at different oblique angles of target plates

    图  10  斜侵彻复合靶等效厚度H

    Figure  10.  Equivalent thickness H of an obliquely-penetrated composite target

    图  12  子弹钢芯穿靶偏移角Δθ

    Figure  12.  Deflection angle Δθ of bullet steel core penetrating through target plate

    图  11  正侵彻等效Q235钢靶厚度h

    Figure  11.  Thickness h of an equivalent normally-penetrated Q235 steel target

    图  13  等效正侵彻Q235钢靶极限穿深条件下的弹靶破坏形态

    Figure  13.  Failure patterns of bullet and target under the limit penetration depth of equivalent Q235 steel target

    图  14  靶板斜置角度与钢芯穿靶偏移角的关系

    Figure  14.  Deflection angle of bullet steel core penetrating through target varied with oblique angle of target plate

    图  15  靶板等效厚度与靶板斜置角度的关系

    Figure  15.  Relation between equivalent thickness of target plate and its oblique angle

    图  16  陶瓷复合靶板和Q235钢靶的等效厚度比与靶板斜置角度的关系

    Figure  16.  Equivalent-thickness ratio of ceramic composite target to Q235 steel target varied with their oblique angle

    表  1  12.7 mm穿燃弹侵彻陶瓷复合靶板实验的部分有效数据

    Table  1.   Part of effective experimental data for penetration of 12.7 mm piercing incendiary bullets into ceramic composite targets

    实验编号靶板斜置角度/(°)着靶速度/(m·s−1)穿透情况背靶穿孔尺寸/mm钢芯剩余质量/g
    1# 576穿透13.228.4
    0 593穿透14.730.1
    521嵌入 5.926.8
    2# 637穿透13.923.6
    15 593嵌入14.322.1
    579嵌入 7.620.7
    3# 693穿透13.117.6
    30 645嵌入 7.113.9
    713穿透15.115.1
    4# 789嵌入 8.311.0
    45 765未嵌入15.6
    833穿透14.314.4
    5#1 086嵌入 4.9 8.1
    601 213穿透13.3 6.0
    1 179穿透14.7 9.3
    下载: 导出CSV

    表  2  不同斜置角度下穿燃弹的弹道极限范围

    Table  2.   Ballistic limit range of piercing incendiary bullets at different oblique angles

    靶板斜置角度/(°)弹道极限/(m·s−1)靶板斜置角度/(°)弹道极限/(m·s−1)
    0521~57645789~833
    15579~637601 086~1 179
    30645~693
    下载: 导出CSV

    表  3  12.7 mm穿燃弹侵彻陶瓷复合靶板的结果

    Table  3.   Results of 12.7 mm piercing incendiary bullets penetrating into ceramic composite target plates

    靶板斜置角度/(°)弹道极限/(m·s−1)剩余质量/g靶板斜置角度/(°)弹道极限/(m·s−1)剩余质量/g
    060026.445 9259.3
    1567518.1601 3756.7
    3077012.5
    下载: 导出CSV

    表  4  12.7 mm穿燃弹对复合靶和Q235钢靶的侵彻参数

    Table  4.   Penetration parameters of 12.7 mm armor-piercing incendiary on composite target and Q235 steel

    靶板斜置角度θ/(°)钢芯偏移角Δθ/(°)等效复合靶厚度H/mm等效Q235钢靶厚度h/mmH/h
    0 −0.816.0100.63
    15 −2.816.6120.72
    30 −4.218.5150.81
    45 −7.622.6190.83
    60−11.532.0280.88
    下载: 导出CSV
  • [1] 孙英. 枪弹对陶瓷/凯芙拉复合靶板的侵彻机理研究[D]. 南京: 南京理工大学, 2010: 66−68. DOI: 10.766/d.y1697767.
    [2] ROSEBERG Z, TSALIAH J. Applying Tate’s model for the interaction of long rod projectiles with ceramic targets [J]. International Journal of Impact Engineering, 1990, 9(2): 247–251. DOI: 10.1016/0734-743X(90)90016-O.
    [3] ROSENBERG Z, DEKEL E. 终点弹道学[M]. 钟方平, 译. 北京: 国防工业出版社, 2014: 123−134.
    [4] 李继承, 陈小伟. 柱形长杆弹侵彻的界面击溃分析 [J]. 爆炸与冲击, 2011, 31(2): 141–147.

    LI Jicheng, CHEN Xiaowei. Theoretical analysis on the interface defeat of a long rod penetration [J]. Explosion and Shock Waves, 2011, 31(2): 141–147.
    [5] ANDERSON C E Jr, HOLMQUIST T J, ORPHAL D L, et al. Dwell and interface defeat on borosilicate glass [J]. International Journal of Applied Ceramic Technology, 2010, 7(6): 776–786. DOI: 10.1111/j.1744-7402.2009.02478.x.
    [6] CHI R Q, SERJOUEI A, SRIDHAR I, et al. Pre-stress effect on confined ceramic armor ballistic performance [J]. International Journal of Impact Engineering, 2015, 84: 159–170. DOI: 10.1016/j.ijimpeng.2015.05.011.
    [7] CHI R Q, SERJOUEI A, SRIDHAR I, et al. Ballistic impact on bi-layer alumina/aluminum armor: a semi-analytical approach [J]. International Journal of Impact Engineering, 2013, 52: 37–46. DOI: 10.1016/j.ijimpeng.2012.10.001.
    [8] 李继承, 陈小伟. 尖锥头长杆弹侵彻的界面击溃分析 [J]. 力学学报, 2011, 43(1): 63–70. DOI: 10.6052/0459-1879-2011-1-lxxb2009-782.

    LI Jicheng, CHEN Xiaowei. Theoretical analysis on the interface defeat of a conical-nosed projectile penetration [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 63–70. DOI: 10.6052/0459-1879-2011-1-lxxb2009-782.
    [9] LI J C, CHEN X W, NING F. Comparative analysis on the interface defeat between the cylindrical and conical-nosed long rods [J]. International Journal of Protective Structures, 2014, 5(1): 21–46. DOI: 10.1260/2041-4196.5.1.21.
    [10] LI J C, CHEN X W, NING F, et al. On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets [J]. International Journal of Impact Engineering, 2015, 83: 37–46. DOI: 10.1016/j.ijimpeng.2015.04.003.
    [11] 谈梦婷, 张先锋, 何勇, 等. 长杆弹撞击装甲陶瓷的界面击溃效应数值模拟 [J]. 兵工学报, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008.

    TAN Mengting, ZHANG Xianfeng, HE Yong, et al. Numerical simulation on interface defeat of ceramic armor impacted by long-rod projectile [J]. Acta Armamentarii, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008.
    [12] 汪建锋, 傅苏黎, 丁华东. 陶瓷基装甲抗枪弹机理研究现状 [J]. 装甲兵工程学院学报, 2004, 18(3): 62–65; 72. DOI: 10.3969/j.issn.1672-1497.2004.03.018.

    WANG Jianfeng, FU Suli, DING Huadong. Current situation in anti-ballistic mechanism about ceramic matrix armor [J]. Journal of Academy of Armorde Force Engineering, 2004, 18(3): 62–65; 72. DOI: 10.3969/j.issn.1672-1497.2004.03.018.
    [13] 丁华东, 许艺, 巴国召, 等. 陶瓷基复合装甲防12.7 mm穿甲燃烧弹的靶试研究: Ⅳ [J]. 装甲兵工程学院学报, 2013, 27(2): 75–79. DOI: 10.11732/j.issn.1672-1497.2013.02.016.

    DING Huadong, XU Yi, BA Guozhao, et al. Ceramic matrix composite armour against the 12.7 mm wear incendiary target test research: Ⅳ [J]. Journal of Academy of Armorde Force Engineering, 2013, 27(2): 75–79. DOI: 10.11732/j.issn.1672-1497.2013.02.016.
    [14] 丁华东, 方宁象, 王玉湘, 等. 陶瓷基复合装甲防12.7 mm穿甲燃烧弹的靶试研究: Ⅲ [J]. 装甲兵工程学院学报, 2013, 27(1): 86–89. DOI: 10.11732/j.issn.1672-1497.2013.01.018.

    DING Huadong, FANG Ningxiang, WANG Yuxiang, et al. Target experiment about ceramics-based composite armour against 12.7 mm armor piercing incendiary: Ⅲ [J]. Journal of Academy of Armored Force Engineering, 2013, 27(1): 86–89. DOI: 10.11732/j.issn.1672-1497.2013.01.018.
    [15] 丁华东, 方宁象, 刘云峰, 等. 陶瓷基复合装甲防12.7 mm穿甲燃烧弹的靶试研究: Ⅱ [J]. 装甲兵工程学院学报, 2012, 26(2): 77–79. DOI: 10.3969/j.issn.1672-1497.2012.02.017.

    DING Huadong, FANG Ningxiang, LIU Yunfeng, et al. Ceramic matrix composite armour against the 12.7 mm wear incendiary target test research:Ⅱ [J]. Journal of Academy of Armorde Force Engineering, 2012, 26(2): 77–79. DOI: 10.3969/j.issn.1672-1497.2012.02.017.
    [16] 丁华东, 方宁象, 刘云峰, 等. 陶瓷基复合装甲防12.7 mm穿甲燃烧弹的靶试研究:Ⅰ [J]. 装甲兵工程学院学报, 2012, 26(1): 78–81. DOI: 10.3969/j.issn.1672-1497.2012.01.017.

    DING Huadong, FANG Ningxiang, LIU Yunfeng, et al. Ceramic matrix composite armour against the 12.7 mm wear incendiary targettestresearch:Ⅰ [J]. Journal of Academy of Armorde Force Engineering, 2012, 26(1): 78–81. DOI: 10.3969/j.issn.1672-1497.2012.01.017.
    [17] 陈斌, 于起峰, 杨跃能, 等. 30 mm半穿甲弹斜侵彻陶瓷/钢复合装甲的弹着角效应研究 [J]. 国防科技大学学报, 2009, 31(6): 139–143. DOI: 10.3969/j.issn.1001-2486.2009.06.026.

    CHEN Bin, YU Qifeng, YANG Yueneng, et al. Effect of impact angle of 30 mm semi-AP projectile obliquely penetrating ceramic/steel targets [J]. Journal of National University of Defense Technology, 2009, 31(6): 139–143. DOI: 10.3969/j.issn.1001-2486.2009.06.026.
    [18] 郭英男. 陶瓷面板复合装甲抗冲击性能及其构型设计研究[D]. 西安: 西北工业大学, 2016: 124−126.

    GUO Yingnan. Research on the ballistic impact behavior and configuration of ceramic faced composite armour [D]. Xi’an: Northwestern Polytechnical University, 2016: 124−126.
    [19] 侯二永. 陶瓷间隙靶抗12.7 mm穿甲燃烧弹机理及性能研究[D]. 长沙: 国防科学技术大学, 2008: 56−61.

    HOU Eryong. Investigation of mechanism and performance of spaced ceramic target under impact of 12.7 mm armor piercing projectile [D]. Changsha: National University of Defense Technology, 2008: 56−61.
    [20] 李小军, 王维占, 张银, 等. 7.62 mm穿甲子弹斜侵彻复合装甲仿真研究 [J]. 装甲兵工程学院学报, 2018, 32(5): 71–75. DOI: 10.3969/j.issn.1672-1497.2018.05.013.

    LI Xiaojun, WANG Weizhan, ZHANG Yin, et al. Simulation study on oblique penetration of 7.62 mm armour-piercing projectile into composite armour [J]. Journal of Academy of Armored Force Engineering, 2018, 32(5): 71–75. DOI: 10.3969/j.issn.1672-1497.2018.05.013.
    [21] 张国伟. 终点效应及其应用技术[M]. 北京: 国防工业出版社, 2006: 33−56.
  • 期刊类型引用(4)

    1. 陈清,程家彭,李斌,王永旭,姚箭,邢化岛,张丹,解立峰. 多孔材料和碳酸氢钠协同抑制氢气爆炸的实验研究. 中国安全生产科学技术. 2025(02): 59-66 . 百度学术
    2. 吕海成,黄孝龙,李宁,翁春生. 气相爆轰波冲击气固界面的透反射特性. 爆炸与冲击. 2022(11): 29-38 . 本站查看
    3. 徐景德,张延炜,胡洋,秦汉圣. 管道内金属网对瓦斯爆炸冲击波抑制作用的实验研究. 煤矿安全. 2021(01): 20-24 . 百度学术
    4. 周宁,张国文,王文秀,赵会军,袁雄军,黄维秋. 点火能对丙烷-空气预混气体爆炸过程及管壁动态响应的影响. 爆炸与冲击. 2018(05): 1031-1038 . 本站查看

    其他类型引用(4)

  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  4849
  • HTML全文浏览量:  1886
  • PDF下载量:  135
  • 被引次数: 8
出版历程
  • 收稿日期:  2018-10-29
  • 修回日期:  2019-03-12
  • 刊出日期:  2019-12-01

目录

/

返回文章
返回