具有恒定冲击载荷的梯度泡沫金属材料设计

常白雪 郑志军 赵凯 何思渊 虞吉林

常白雪, 郑志军, 赵凯, 何思渊, 虞吉林. 具有恒定冲击载荷的梯度泡沫金属材料设计[J]. 爆炸与冲击, 2019, 39(4): 041101. doi: 10.11883/bzycj-2018-0431
引用本文: 常白雪, 郑志军, 赵凯, 何思渊, 虞吉林. 具有恒定冲击载荷的梯度泡沫金属材料设计[J]. 爆炸与冲击, 2019, 39(4): 041101. doi: 10.11883/bzycj-2018-0431
CHANG Baixue, ZHENG Zhijun, ZHAO Kai, HE Siyuan, YU Jilin. Design of gradient foam metal materials with a constant impact load[J]. Explosion And Shock Waves, 2019, 39(4): 041101. doi: 10.11883/bzycj-2018-0431
Citation: CHANG Baixue, ZHENG Zhijun, ZHAO Kai, HE Siyuan, YU Jilin. Design of gradient foam metal materials with a constant impact load[J]. Explosion And Shock Waves, 2019, 39(4): 041101. doi: 10.11883/bzycj-2018-0431

具有恒定冲击载荷的梯度泡沫金属材料设计

doi: 10.11883/bzycj-2018-0431
基金项目: 国家自然科学基金(11772330,11872360,11572087);中央高校基本科研业务费专项资金(WK2480000003);机械结构强度与振动国家重点实验室开放基金(SV2017-KF-13)
详细信息
    作者简介:

    常白雪(1992- ),女,博士研究生,bxchang@mail.ustc.edu.cn

    通讯作者:

    郑志军(1979- ),男,博士,副教授,zjzheng@ustc.edu.cn

  • 中图分类号: O347

Design of gradient foam metal materials with a constant impact load

  • 摘要: 多胞材料可通过大变形大量地吸收冲击能量,引入密度梯度可进一步提高其耐撞性。梯度多胞材料的宏观力学响应对材料密度分布极为敏感,不同类型的细观构型的影响也极为不同。已有的研究工作主要局限在对给定的密度梯度分析其动态响应,较少对耐撞性设计方法进行研究。本文针对梯度闭孔泡沫金属材料,基于非线性塑性冲击波模型发展了耐撞性反向设计方法,以维持冲击物受载恒定为目标,运用级数法获得了简化模型和渐近解。利用变胞元尺寸法构建了连续梯度变化的三维Voronoi细观有限元模型,并利用ABAQUS/Explicit有限元软件对理论设计进行数值验证。结果表明,反向设计理论简化模型的渐近解对于梯度闭孔泡沫金属材料的耐撞性设计是有效的,所提出的耐撞性设计方法在控制冲击吸能过程和冲击物受载方面具有指导意义。
  • 图  1(a)  不同相对密度下闭孔泡沫模型的准静态应力应变关系

    Figure  1(a).  Nominal stress–strain relations of closed-cell foam models with different relative densities

    1(b)  无量纲初始压溃应力和应变硬化参数与多胞模型相对密度的幂律关系[13]

    1(b).  Power-law fitting of material parameters of the R-PH idealization with relative density[13]

    图  2  质量块冲击梯度多胞杆

    Figure  2.  A diagram of 3D graded Voronoi models under mass impact

    图  3  相对密度分布的渐近解和冲击载荷历程的理论预测值

    Figure  3.  Theoretical predictions of asymptotic solutions of relative density distribution and the history curves of impact force

    图  4  冲击速度与冲击波波阵面位置的历史曲线

    Figure  4.  Evolution history of impact velocity and location of shock front

    图  5  密度梯度多胞杆细观有限元模型

    Figure  5.  Cell-based finite element models of density gradient cellular rods

    图  6  梯度多胞细观有限元模型中轴剖面变形图

    Figure  6.  Deformation patterns of cell-based finite element models in the middle section of the density gradient cellular rods perpendicular to x-axis

    图  7  冲击端和支撑端载荷理论预测与有限元计算结果的比较

    Figure  7.  Comparisons of impact force and support force curves history between theoretical predictions and finite element (FE) results

    图  8  有限元计算结果对比

    Figure  8.  Comparisons of finite element (FE) results

  • [1] REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5−6): 531–570. DOI: 10.1016/s0734-743x(97)00016-x.
    [2] 华云龙, 余同希. 多胞材料的力学行为 [J]. 力学进展, 1990, 21(4): 457–469. DOI: 10.6052/1000-0992-1991-4-J1991-052

    HUA Yunlong, YU Tongxi. Mechanical behavior of cellular solids [J]. Advances in Mechanics, 1990, 21(4): 457–469. DOI: 10.6052/1000-0992-1991-4-J1991-052
    [3] ELNASRI I, PATTOFATTO S, ZHAO H, et al. Shock enhancement of cellular structures under impact loading: part Ⅰ experiments [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2652–2671. DOI: 10.1016/j.jmps.2007.04.005.
    [4] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1999.
    [5] CUI L, KIERNAN S, GILCHRIST M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering: A, 2009, 507(1): 215–225. DOI: 10.1016/j.msea.2008.12.011.
    [6] WANG X K, ZHENG Z J, YU J L, et al. Impact resistance and energy absorption of functionally graded cellular structures [J]. Applied Mechanics and Materials, 2011, 69: 73−78. DOI: 10.4028/www.scientific.net/AMM.69.73.
    [7] WANG X K, ZHENG Z J, YU J L. Crashworthiness design of density-graded cellular metals [J]. Theoretical and Applied Mechanics Letters, 2013, 3(3): 031001. DOI: 10.1063/2.1303101.
    [8] SHEN C J, YU T X, LU G X. Double shock mode in graded cellular rod under impact [J]. International Journal of Solids and Structures, 2013, 50(1): 217–233. DOI: 10.1016/j.ijsolstr.2012.09.021.
    [9] ZHENG J, QIN Q, WANG T J. Impact plastic crushing and design of density-graded cellular materials [J]. Mechanics of Materials, 2016, 94: 66–78. DOI: 10.1016/j.mechmat.2015.11.014.
    [10] SHEN C J, LU G X, YU T X. Investigation into the behavior of a graded cellular rod under impact [J]. International Journal of Impact Engineering, 2014, 74: 92–106. DOI: 10.1016/j.ijimpeng.2014.02.015.
    [11] ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model [J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93–114. DOI: 10.1016/j.jmps.2014.07.013.
    [12] 蔡正宇, 丁圆圆, 王士龙, 等. 梯度多胞牺牲层的抗爆炸分析 [J]. 爆炸与冲击, 2017, 37(3): 396–404. DOI: 10.11883/1001-1455(2017)03-0396-09

    CAI Zhengyu, DING Yuanyuan, WANG Shilong, et al. Anti-blast analysis of graded cellular sacrificial cladding [J]. Explosion and Shock Waves, 2017, 37(3): 396–404. DOI: 10.11883/1001-1455(2017)03-0396-09
    [13] YANG J, WANG S L, DING Y Y, et al. Crashworthiness of graded cellular materials: a design strategy based on a nonlinear plastic shock model [J]. Materials Science and Engineering: A, 2017, 680: 411–420. DOI: 10.1016/j.msea.2016.11.010.
    [14] DING Y Y, WANG S L, ZHAO K, et al. Blast alleviation of cellular sacrificial cladding: a nonlinear plastic shock model [J]. International Journal of Applied Mechanics, 2016, 8(4): 1650057. DOI: 10.1142/S1758825116500575.
    [15] LI K, GAO X L, WANG J. Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness [J]. International Journal of Solids and Structures, 2007, 44(14−15): 5003–5026. DOI: 10.1016/j.ijsolstr.2006.12.017.
    [16] AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids and Structures, 2011, 48(3−4): 506–516. DOI: 10.1016/j.ijsolstr.2010.10.018.
    [17] 张新春, 刘颖. 密度梯度蜂窝材料动力学性能研究 [J]. 工程力学, 2012, 29(8): 372–377. DOI: 10.6052/j.issn.1000-4750.2010.12.0872

    ZHANG Xinchun, LIU Ying. Research on the dynamic crushing of honeycombs with density gradient [J]. Engineering Mechanics, 2012, 29(8): 372–377. DOI: 10.6052/j.issn.1000-4750.2010.12.0872
    [18] 吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响 [J]. 爆炸与冲击, 2013, 33(2): 163–168. DOI: 10.3969/j.issn.1001-1455.2013.02.008

    WU Hexiang, LIU Ying. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials [J]. Explosion and Shock Waves, 2013, 33(2): 163–168. DOI: 10.3969/j.issn.1001-1455.2013.02.008
    [19] FAN J H, ZHANG J J, WANG Z H, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams [J]. Materials Science and Engineering: A, 2013, 561: 352–361. DOI: 10.1016/j.msea.2012.10.026.
    [20] ZHANG J J, WANG Z H, ZHAO L M. Dynamic response of functionally graded cellular materials based on the Voronoi model [J]. Composites Part B: Engineering, 2016, 85: 176–187. DOI: 10.1016/j.compositesb.2015.09.045.
    [21] CHEN D, KITIPORNCHAI S, YANG J. Dynamic response and energy absorption of functionally graded porous structures [J]. Materials & Design, 2018, 140: 473–487. DOI: 10.1016/j.matdes.2017.12.019.
    [22] 常白雪, 郑志军, 赵凯, 等. 梯度多胞材料耐撞性设计的简化模型和渐近解 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 094615. DOI: 10.1360/SSPMA2018-00162

    CHANG Baixue, ZHENG Zhijun, ZHAO Kai, et al. A simplified model and its asymptotic solution for the crashworthiness design of graded cellular material [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2018, 48(9): 094615. DOI: 10.1360/SSPMA2018-00162
    [23] DING Y Y, WANG S L, ZHENG Z J, et al. Dynamic crushing of cellular materials: a unique dynamic stress–strain state curve [J]. Mechanics of Materials, 2016, 100: 219–31. DOI: 10.1016/j.mechmat.2016.07.001.
    [24] WANG P, ZHENG Z J, LIAO S F, et al. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism [J]. Acta Mechanica Sinica, 2018, 34(1): 117–129. DOI: 10.1007/s10409-017-0716-1.
    [25] HE S Y, ZHANG Y, DAI G, et al. Preparation of density-graded aluminum foam [J]. Materials Science and Engineering A, 2014, 618: 496–499. DOI: 10.1016/j.msea.2014.08.087.
  • 加载中
图(9)
计量
  • 文章访问数:  5397
  • HTML全文浏览量:  2137
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-31
  • 修回日期:  2018-12-07
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回