Al/Mg波阻抗梯度材料加强型Whipple结构超高速撞击特性研究

张品亮 宋光明 龚自正 田东波 武强 曹燕 李宇 李明

张品亮, 宋光明, 龚自正, 田东波, 武强, 曹燕, 李宇, 李明. Al/Mg波阻抗梯度材料加强型Whipple结构超高速撞击特性研究[J]. 爆炸与冲击, 2019, 39(12): 125101. doi: 10.11883/bzycj-2018-0461
引用本文: 张品亮, 宋光明, 龚自正, 田东波, 武强, 曹燕, 李宇, 李明. Al/Mg波阻抗梯度材料加强型Whipple结构超高速撞击特性研究[J]. 爆炸与冲击, 2019, 39(12): 125101. doi: 10.11883/bzycj-2018-0461
ZHANG Pinliang, SONG Guangming, GONG Zizheng, TIAN Dongbo, WU Qiang, CAO Yan, LI Yu, LI Ming. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials[J]. Explosion And Shock Waves, 2019, 39(12): 125101. doi: 10.11883/bzycj-2018-0461
Citation: ZHANG Pinliang, SONG Guangming, GONG Zizheng, TIAN Dongbo, WU Qiang, CAO Yan, LI Yu, LI Ming. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials[J]. Explosion And Shock Waves, 2019, 39(12): 125101. doi: 10.11883/bzycj-2018-0461

Al/Mg波阻抗梯度材料加强型Whipple结构超高速撞击特性研究

doi: 10.11883/bzycj-2018-0461
基金项目: 国家自然科学基金(11505299)
详细信息
    作者简介:

    张品亮(1986- ),男,博士,高级工程师,zhangpinliang620@126.com

    通讯作者:

    龚自正(1964- ),男,博士,研究员,gongzz@263.net

    李 明(1964- ),男,博士,研究员,liming_cast@sina.cn

  • 中图分类号: O382; O521.2; V416.5

Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials

  • 摘要: 波阻抗梯度材料加强型Whipple结构具有优异的防护性能。本文的目的是研究Al/Mg波阻抗梯度材料加强型Whipple结构在5.0 km/s撞击速度下的超高速撞击特性,以及除具有高阻抗的迎撞击面在弹丸中产生更高的冲击压力和温升外,影响波阻抗梯度材料防护性能的主要因素。本文中提出一种由铝合金表层和镁合金基底组成的面密度等效于1.5 mm厚铝合金的新型波阻抗梯度防护屏,采用二级轻气炮在5.0 km/s的撞击速度下对Al/Mg波阻抗梯度材料加强型和铝合金Whipple结构进行了初步超高速撞击对比实验,研究了超高速撞击防护屏穿孔、碎片云和后墙损伤特性。与铝合金防护结构相比,Al/Mg防护结构具有防护屏穿孔翻边更明显、后墙损伤较轻微、碎片云扩散半角大和撞击坑细化程度高4个主要特征。本文中开展了理论分析与计算,研究了冲击耦合过程、波传播特性和热力学状态等。结果表明:不受面密度影响,Al/Mg防护屏能改变冲击波在靶中的传播特征,使弹丸破碎程度更高,并且提升了防护屏中的内能转化率,具有优异的动能耗散特性。因此,与同等面密度的铝合金Whipple结构相比,Al/Mg结构具有更优异的防护性能。
  • 图  1  实验原理示意图及防护结构实物图

    Figure  1.  Schematic diagram of the experimental principle and photo of a Whipple shield

    图  2  防护屏受撞击后形成的穿孔形貌

    Figure  2.  Perforation morphologies of shield bumpers subjected to impact

    图  3  弹丸撞击防护屏所产生的碎片云形貌

    Figure  3.  Morphologies of debris cloud induced by impact of projectiles on shield bumpers

    图  4  2种防护结构受铝弹丸以5.0 km/s的速度撞击后其后墙表面的损伤形貌

    Figure  4.  Damage patterns on the rear wall surfaces of the two shield structures impacted by aluminum projectiles with the velocity of 5.0 km/s

    表  1  超高速撞击实验参数与结果

    Table  1.   Hypervelocity impact test conditions and results

    实验编号D/mmv0/(km·s−1)防护屏类型d/mmd/D实验结果
    1-15.254.8932A121.50.286失效
    1-25.254.826Al/Mg1.90.362未失效
    下载: 导出CSV

    表  2  材料冲击耦合主要参数[17-19]

    Table  2.   Key parameters of materials for shock coupling[17-19]

    材质ρ0/(g·cm−3)${c_0}$/(km·s−1)λγ0${p_{\rm{m}}}$/GPa
    铝合金2.7845.3701.2902.00071
    镁合金1.7754.5161.2561.54040~50
    下载: 导出CSV
  • [1] WHIPPLE F L. Meteorites and space travel [J]. Astronomical Journal, 1947, 52(5): 131–131. DOI: 10.1086/106009.
    [2] SCHMIDT R M, HOUSEN K R, BJORKMAN M D, et al. Advanced all-metal orbital debris shield performance at 7 to 17 km/s [J]. International Journal of Impact Engineering, 1995, 17(4/5/6): 719–730.
    [3] RAMADHAN A A, ABU TALIB A R, MOHD RAFIE A S, et al. High velocity impact response of Kevlar-29/epoxy and 6061-T6 aluminum laminated panels [J]. Materials and Design, 2013, 43: 307–321. DOI: 10.1016/j.matdes.2012.06.034.
    [4] CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1/2/3): 217–228. DOI: 10.1016/0734-743x(95)99848-l.
    [5] COUR-PALAIS B G. Hypervelocity impact in metals, glass and composites [J]. International Journal of Impact Engineering, 1987, 5(1/2/3/4): 221–237. DOI: 10.1016/0734-743x(87)90040-6.
    [6] HUANG X, LING Z, LIU Z D, et al. Amorphous alloy reinforced Whipple shield structure [J]. International Journal of Impact Engineering, 2012, 42: 1–10. DOI: 10.1016/j.ijimpeng.2011.11.001.
    [7] NAHME H, STILP A J, WEBER K. Shock wave reflection behavior in double-layer meteoroid bumper systems [J]. AIP Conference Proceedings, 1997, 429(1): 941–944.
    [8] 侯明强, 龚自正, 徐坤博, 等. 密度梯度薄板超高速撞击特性的实验研究 [J]. 物理学报, 2014, 63(2): 024701. DOI: 10.7498/aps.63.024701.

    HOU Mingqiang, GONG Zizheng, XU Kunbo, et al. Experimental study on hypervelo city impact characteristics of density-grade thin-plate [J]. Acta Physica Sinica, 2014, 63(2): 024701. DOI: 10.7498/aps.63.024701.
    [9] ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields [J]. International Journal of Impact Engineering, 2019, 126: 101–108. DOI: 10.1016/j.ijimpeng.2018.12.007.
    [10] HUI D, DUTTA P K. A new concept of shock mitigation by impedance-graded materials [J]. Composites Part B: Engineering, 2011, 42(8): 2181–2184. DOI: 10.1016/j.compositesb.2011.05.016.
    [11] LONG L P, LIU W S, MA Y Z, et al. Microstructure and diffusion behaviors of the diffusion bonded Mg/Al joint [J]. High Temperature Materials and Processes, 2017, 36(9): 897–903. DOI: 10.1515/htmp-2016-0023.
    [12] PIEKUTOWSKI A J. Fromation and description of debris clouds producted by hypervelocity impact: NAS8-38856 [R]. USA: NASA, 1996.
    [13] PIEKUTOWSKI A J, POORMON K L, CHRISTIANSEN E L, et al. Performance of Whipple shields at impact velocities above 9 km/s [J]. International Journal of Impact Engineering, 2011, 38(6): 495–503. DOI: 10.1016/j.ijimpeng.2010.10.021.
    [14] PIEKUTOWSKI A J, POORMON K L. Impact of thin aluminum sheets with aluminum spheres up to 9 km/s [J]. International Journal of Impact Engineering, 2008, 35: 1716–1722. DOI: 10.1016/j.ijimpeng.2008.07.023.
    [15] GRADY D E, KIPP M E. Experimental measurement of dynamic failure and fragmentation properties of metals [J]. International Journal of Solids and Structures, 1995, 32(17/18): 2779–2791. DOI: 10.1016/0020-7683(94)00297-a.
    [16] MEYERS M A. 材料的动力学行为[M]. 张庆明, 译. 北京: 国防工业出版社, 2006: 83.
    [17] CHRISTIANSEN E L. Meteoroid/debris shielding: NASA TP-2003-210788 [R]. 2003.
    [18] ANDERSON C E Jr, TRUCANO T G, MULLIN S A. Debris cloud dynamics [J]. International Journal of Impact Engineering, 1990, 9(1): 89–113. DOI: 10.1016/0734-743X(90)90024-P.
    [19] URTIEW P A, GROVER R. The melting temperature of magnesium under shock loading [J]. Journal of Applied Physics, 1977, 48(3): 1122–1126. DOI: 10.1063/1.323789.
    [20] ANG J A. Impact flash jet initiation phenomenology [J]. International Journal of Impact Engineering, 1990, 10(1/2/3/4): 23–33. DOI: 10.1016/0734-743x(90)90046-x.
    [21] KIPP M E, GRADY D E, SWEGLE J W. Numerical and experimental studies of high-velocity impact fragmentation [J]. International Journal of Impact Engineering, 1993, 14(1/2/3/4): 427–438. DOI: 10.1016/0734-743x(93)90040-e.
    [22] 谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007.
    [23] 经福谦. 实验物态方程导引[M]. 2版. 北京: 科学出版社, 1999.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  4806
  • HTML全文浏览量:  1602
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-14
  • 修回日期:  2019-01-13
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回